Discussion of "The Great Recession : A Self-Fulfilling Global Panic"

Philippe Bacchetta & Eric van Wincoop

Franck Portier

Conference on Macroeconomics – Understanding low growth Bank of England 2013

Two key elements

► Very rich paper

- Full of ideas, mechanisms, results
- ▶ I will limit myself to the discussion of what I considered are its two key elements.

Two key elements

- ► Very rich paper
- ▶ Full of ideas, mechanisms, results
- ▶ I will limit myself to the discussion of what I considered are its two key elements.

Two key elements

- ► Very rich paper
- ▶ Full of ideas, mechanisms, results
- ▶ I will limit myself to the discussion of what I considered are its two key elements.

Two key elements

$1. \ \mbox{A theory for "panic" equilibria}$

2. A theory for the international transmission of shocks

Two key elements

- $1. \ \mbox{A theory for "panic" equilibria}$
- 2. A theory for the international transmission of shocks

▶ The Keynesian "cross" model is a good metaphor for all the paper

c = c(y)c = y

▶ The Keynesian "cross" model is a good metaphor for all the paper

►

$$c = c(y)$$

 $c = y$

Multiplicity is indeed not so difficult to obtain.

- Consider a static GE model of yeoman farmer (the YEOMAN FARMER model)
- N farmers with preferences

$$U(C_i) - L_i^{1+\gamma}$$

- C_i is a CES aggregator of C_{ij}
- Each farmer has monopoly power on good i
- Technology is

$$C_{i,(1)} = AL_i^{\alpha}$$

$$C_{i,(2)} = AL_i^{\beta} - C$$

- Multiplicity is indeed not so difficult to obtain.
- ▶ Consider a static GE model of yeoman farmer (the YEOMAN FARMER model)
- N farmers with preferences

$$U(C_i) - L_i^{1+\gamma}$$

- ▶ *C_i* is a CES aggregator of *C_{ij}*
- Each farmer has monopoly power on good i
- Technology is

$$C_{i,(1)} = AL_i^{\alpha}$$

$$C_{i,(2)} = AL_i^{\beta} - C$$

Multiplicity

- Multiplicity is indeed not so difficult to obtain.
- ► Consider a static GE model of yeoman farmer (the YEOMAN FARMER model)
- ► *N* farmers with preferences

$$U(C_i) - L_i^{1+\gamma}$$

- C_i is a CES aggregator of C_{ij}
- Each farmer has monopoly power on good i
- Technology is

$$C_{i,(1)} = AL_i^{\alpha}$$

$$C_{i,(2)} = AL_i^{\beta} - C$$

Multiplicity

- Multiplicity is indeed not so difficult to obtain.
- ▶ Consider a static GE model of yeoman farmer (the YEOMAN FARMER model)
- ► *N* farmers with preferences

$$U(C_i) - L_i^{1+\gamma}$$

- C_i is a CES aggregator of C_{ij}
- Each farmer has monopoly power on good i
- Technology is

$$C_{i,(1)} = AL_i^{\alpha}$$

$$C_{i,(2)} = AL_i^{\beta} - C$$

Multiplicity

- Multiplicity is indeed not so difficult to obtain.
- ► Consider a static GE model of yeoman farmer (the YEOMAN FARMER model)
- ► *N* farmers with preferences

$$U(C_i) - L_i^{1+\gamma}$$

- C_i is a CES aggregator of C_{ij}
- Each farmer has monopoly power on good i
- Technology is

$$C_{i,(1)} = AL_i^{\alpha}$$

$$C_{i,(2)} = AL_i^{\beta} - C$$

Multiplicity

- Multiplicity is indeed not so difficult to obtain.
- ► Consider a static GE model of yeoman farmer (the YEOMAN FARMER model)
- ► *N* farmers with preferences

$$U(C_i) - L_i^{1+\gamma}$$

- C_i is a CES aggregator of C_{ij}
- Each farmer has monopoly power on good i
- Technology is

$$C_{i,(1)} = AL_i^{\alpha}$$

$$C_{i,(2)} = AL_i^{\beta} - C$$

▶ The model is solved by deriving the best response function

$$P_i = P_i^{\star}(P)$$

- ▶ If farmer *i* expects the price of the competitors to be high, then he expects demand to be low.
- It will be not profitable to operate with technology 2 as it required high scale of production to cover the fixed cost.
- ▶ Therefore the farmer will operate with the high marginal cost technology.
- ▶ Therefore prices will be high.

- ▶ If farmer *i* expects the price of the competitors to be high, then he expects demand to be low.
- It will be not profitable to operate with technology 2 as it required high scale of production to cover the fixed cost.
- ▶ Therefore the farmer will operate with the high marginal cost technology.
- ▶ Therefore prices will be high.

- ▶ If farmer *i* expects the price of the competitors to be high, then he expects demand to be low.
- It will be not profitable to operate with technology 2 as it required high scale of production to cover the fixed cost.
- ▶ Therefore the farmer will operate with the high marginal cost technology.
- Therefore prices will be high.

- ▶ If farmer *i* expects the price of the competitors to be high, then he expects demand to be low.
- It will be not profitable to operate with technology 2 as it required high scale of production to cover the fixed cost.
- ▶ Therefore the farmer will operate with the high marginal cost technology.
- ► Therefore prices will be high.

- ▶ Quite a lot of coordination is required to obtain multiplicity
- But a result that survives is that there are multipliers
- In those coordination games, shocks are amplified even when the equilibrium is unique (Cooper and John).

- ▶ Quite a lot of coordination is required to obtain multiplicity
- But a result that survives is that there are multipliers
- In those coordination games, shocks are amplified even when the equilibrium is unique (Cooper and John).

- ▶ Quite a lot of coordination is required to obtain multiplicity
- But a result that survives is that there are multipliers
- In those coordination games, shocks are amplified even when the equilibrium is unique (Cooper and John).

\blacktriangleright A fraction ψ of home consumption is in home goods

- \blacktriangleright A fraction $1-\psi$ of home consumption is in foreign goods
- A fraction ψ of foreign consumption is in foreign goods
- A fraction $1-\psi$ of foreign consumption is in home goods
- Equilibrium is given by

$$y = \psi c(y) + (1 - \psi)c^{*}(y^{*})$$

$$y^{*} = \psi c^{*}(y^{*}) + (1 - \psi)c(y)$$

- \blacktriangleright A fraction ψ of home consumption is in home goods
- \blacktriangleright A fraction $1-\psi$ of home consumption is in foreign goods
- A fraction ψ of foreign consumption is in foreign goods
- \blacktriangleright A fraction $1-\psi$ of foreign consumption is in home goods
- Equilibrium is given by

$$y = \psi c(y) + (1 - \psi)c^*(y^*)$$

 $y^* = \psi c^*(y^*) + (1 - \psi)c(y)$

- \blacktriangleright A fraction ψ of home consumption is in home goods
- \blacktriangleright A fraction $1-\psi$ of home consumption is in foreign goods
- \blacktriangleright A fraction ψ of foreign consumption is in foreign goods
- A fraction 1ψ of foreign consumption is in home goods
- Equilibrium is given by

$$y = \psi c(y) + (1 - \psi)c^{*}(y^{*})$$

$$y^{*} = \psi c^{*}(y^{*}) + (1 - \psi)c(y)$$

- \blacktriangleright A fraction ψ of home consumption is in home goods
- \blacktriangleright A fraction $1-\psi$ of home consumption is in foreign goods
- \blacktriangleright A fraction ψ of foreign consumption is in foreign goods
- \blacktriangleright A fraction $1-\psi$ of foreign consumption is in home goods
- Equilibrium is given by

$$y = \psi c(y) + (1 - \psi)c^{*}(y^{*})$$

$$y^{*} = \psi c^{*}(y^{*}) + (1 - \psi)c(y)$$

- \blacktriangleright A fraction ψ of home consumption is in home goods
- \blacktriangleright A fraction $1-\psi$ of home consumption is in foreign goods
- \blacktriangleright A fraction ψ of foreign consumption is in foreign goods
- \blacktriangleright A fraction $1-\psi$ of foreign consumption is in home goods
- ► Equilibrium is given by

$$y = \psi c(y) + (1 - \psi)c^*(y^*)$$

 $y^* = \psi c^*(y^*) + (1 - \psi)c(y)$

•

▶ One can be doubtful that sunspot create so discrete jumps in economic activities

- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - × High integration eliminates asymmetric equilibria
 - imes Intuition : if integration is total, we are back to a close economy
 - imes the model assumes full coordination within a country
 - × A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B^* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ► This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - × High integration eliminates asymmetric equilibria
 - imes Intuition : if integration is total, we are back to a close economy
 - imes the model assumes full coordination within a country
 - X A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - × High integration eliminates asymmetric equilibria
 - imes Intuition : if integration is total, we are back to a close economy
 - imes the model assumes full coordination within a country
 - X A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - imes High integration eliminates asymmetric equilibria
 - \times $\,$ Intuition : if integration is total, we are back to a close economy
 - imes the model assumes full coordination within a country
 - × A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B^* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - \times High integration eliminates asymmetric equilibria
 - imes Intuition : if integration is total, we are back to a close economy
 - imes the model assumes full coordination within a country
 - × A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B^* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - \times High integration eliminates asymmetric equilibria
 - \times $\;$ Intuition : if integration is total, we are back to a close economy
 - imes the model assumes full coordination within a country
 - × A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B^* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - \times $\;$ High integration eliminates asymmetric equilibria
 - \times $\;$ Intuition : if integration is total, we are back to a close economy
 - \times $\,$ the model assumes full coordination within a country
 - × A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B^* will disappear.

- ▶ One can be doubtful that sunspot create so discrete jumps in economic activities
- ▶ This requires a lot of coordination between agents
- It is even more improbable that the low equilibrium is selected *simultaneously* but the two economies
- Philippe and Eric have a nice result :
 - \times $\;$ High integration eliminates asymmetric equilibria
 - \times $\;$ Intuition : if integration is total, we are back to a close economy
 - \times $\,$ the model assumes full coordination within a country
 - \times A more economic story : if home is pessimistic, the foreign economy will be pulled down flow external demand), and B^* will disappear.

Demand linkages eliminate the non-symetric equilibria

- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

- Demand linkages eliminate the non-symetric equilibria
- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

- Demand linkages eliminate the non-symetric equilibria
- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

- Demand linkages eliminate the non-symetric equilibria
- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

- Demand linkages eliminate the non-symetric equilibria
- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

- Demand linkages eliminate the non-symetric equilibria
- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

- Demand linkages eliminate the non-symetric equilibria
- Demand linkages related to change in expectations create comovements
- With Paul Beaudry and Martial Dupaigne, we have found evidence of expectations coordinating economies
- ▶ We have identified US *news* about future TFP
- ▶ We have shown that it creates a boom in the US as well as in Canada
- Same result with Germany and Austria
- If the news is global (in all agents information sets, then expectations are coordinated.

2. A theory for the international transmission of shocks The response to a US technological news in the US

2. A theory for the international transmission of shocks The response to a US technological news in the US

2. A theory for the international transmission of shocks

The response to a US technological news in Canada

2. A theory for the international transmission of shocks The response to a German technological news in Germany

2. A theory for the international transmission of shocks The response to a German technological news in Germany

2. A theory for the international transmission of shocks

The response to a German technological news in Austria

