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D Spectral Density Estimation

D.1 Schuster’s Periodogram

We estimate the spectral density of series {xt}T−1
t=0 of finite length T by first computing

the Discrete Fourier Transform (DFT) Xk, which results from sampling the Discrete Time

Fourier Transform (DTFT) at frequency intervals ∆ω = 2π
T

in [−π, π):

Xk = X
(
ei

2π
T
k
)

=
T−1∑
t=0

xte
−i 2π

T
kt, (D.1)

for k = 1, ..., T − 1. We then can compute samples of the Sample Spectral Density (SSD) Sk

from samples of Schuster’s periodogram Ik
1 according to

Sk = Ik =
1

T
|Xk|2 (D.2)

Taking advantage of the fact that X is even, this amounts to evaluating the spectral density

at T frequencies equally spaced between 0 and π.2

1Another approach for obtaining the spectral density is to take a Fourier transform of the sequence of
autocovariances of x. We show below that this method gives essentially the same result when applied to our
hours series.

2See Priestley [1981] for a detailed exposition of spectral analysis, Alessio [2016] for practical implemen-
tation and Cochrane [2005] for a quick introduction.

1



D.2 Zero-Padding to Increase the Graphic Resolution of the Spec-
trum

As we have computed only T samples of the DTFT X (eiω), we might not have a detailed

enough picture of the shape of the underlying function X (eiω), and therefore of the spectral

density |X (eiω) |2. This problem is particularly acute if one is interested in the behavior of

the spectrum at longer periodicities (i.e., lower frequencies). Specifically, since we uniformly

sample frequencies, and since the periodicity p corresponding to frequency ω is given by

p = 2π
ω

, the spectrum is sparser at longer periodicities (and denser at shorter ones). While

the degree of accuracy with which the samples of Xk describe the shape of X (eiω) is dictated

and limited by the length T of the data set, we can nonetheless increase the number of points

at which we sample the DTFT in order to increase the graphic resolution of the spectrum.

One common (and numerically efficient) way to do this is to add a number of zeros to the end

of the sequence xt before computing the DFT. This operation is referred to as zero-padding.

As an example, suppose that we add exactly T zeros to the end of the length-T sequence

{xt}. One can easily check that this has no effect on the DFT computed at the original

T sampled frequencies, instead simply adding another set of T sampled frequencies at the

midpoints between each successive pair of original frequencies.3

If one is interested in the behavior of the spectral density at long enough periodicities,

zero-padding in this way is useful. We will denote by N the number of samples at which the

DTFT (and thus the SSD) is sampled, meaning that T ′ = N − T zeros will be added to the

sequence {xt} before computing the DFT. In the main text, we have set N = 1, 024.4

3This is true when the number of zeros added to the end of the sample is an integer multiple of T . When
instead a non-integer multiple is added, the set of frequencies at which the padded DFT is computed no longer
contains the original set of points, so that the two cannot be directly compared in this way. Nonetheless,
the over all pattern of the sampled spectrum is in general unaffected by zero-padding.

4As is well known, standard numerical routines for computing the DFT (i.e., those based on the Fast
Fourier Transform algorithm) are computationally more efficient when N is a power of 2, which is why we
set N = 1, 024 rather than, say, N = 1, 000.
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D.3 Smoothed Periodogram Estimates

We obtain the raw spectrum estimate of a series non-parametrically as the squared modulus

of the DFT of the (zero-padded) data sequence, divided by the length of the data set.5 This

estimate is called Schuster’s periodogram, or simply the periodogram. It turns out that the

periodogram is asymptotically unbiased, but is not a consistent estimate of the spectrum,

and in particular the estimate of the spectrum at a given frequency ωk is generally quite

unstable (i.e., it has a high standard error). Notwithstanding this fact, the over all pattern

of the spectrum is much more stable, in the sense that the average value of the estimated

spectrum within a given frequency band surrounding ωk is in fact consistent. In order to

obtain a stable and consistent estimate of the spectrum, we exploit this fact by performing

frequency-averaged smoothing. In particular, we obtain our estimate of the SSD S(ω) by

kernel-smoothing the periodogram I(ω) over an interval of frequencies centered at ω. Since

the errors in adjacent values of I(ω) are uncorrelated in large samples, this operation reduces

the standard errors of the estimates without adding too much bias. In our estimations, we

use a Hamming window of length W = 13 as the smoothing kernel.6

D.4 Smoothing and Zero-Padding with a Multi-Peaked Spectral
Density

To illustrate the effects of smoothing and zero-padding, in this section we compare the

estimated spectral density with the known theoretical one for a process that exhibits peaks in

the spectral density at periods 20, 40 and 100 quarters. We think this is a good description of

the factor variables we are studying (i.e., hours worked, unemployment, capacity utilization),

that display both business cycle movements and lower-frequency movements unrelated to the

business cycle. We construct our theoretical series as the sum of three independent stationary

AR(2) processes, denoted x1, x2 and x3.

Each of the xi follows an AR(2) process

xit = ρi1xit−1 + ρi2xit−2 + εit,

5Note that we divide by the original length of the series (i.e., T ), rather than by the length of the
zero-padded series (i.e., N).

6Using alternative kernel functions makes little difference to the results.
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where εi is i.i.d. N(0, σ2
i ). The spectral density of this process can be shown to be given by

S(ω) = σ2
i

{
2π[1 + ρ2

i1 + ρ2
i2 + 2(ρi1ρi2 − ρi1) cos(ω)− 2ρi2 cos(2ω)]

}−1

It can also be shown (see, e.g., Sargent [1987]) that for a given ρi2, the spectral density has

a peak at frequency ωi if

ρi1 = −4ρi2 cos(2π/ωi)

1− ρi2
We set ωi equal to 20, 40, and 100 quarters, respectively, for the three processes, and ρi2

equal to -0.9, -0.95, and -0.95. The corresponding values for ρi1 are 1.802, 1.9247, and 1.9449.

We set σi equal to 6, 2, and 1. We then construct xt = x1t+x2t+x3t. The theoretical spectral

density of x is shown in Figure 1. As in the factor utilisation series we are using in the main

text, the spectral density shows long-run fluctuations, but the bulk of the business cycle

movements is explained by movements at the 40-quarter periodicity, although we observe

another peak at periodicity 20 quarters.

We simulate this process 1,000,000 times, with T = 270 for each simulation, which is the

length of our observed macroeconomic series. We estimate the spectral density for various

values of N (zero-padding) and W (length of the Hamming window). Higher N corresponds

to higher resolution, and higher W to more smoothing. On each panel of Figure 2, we report

the mean of the estimated spectrum over the 1,000,000 simulations (solid grey line), the mean

± one standard deviation (dashed lines), and the theoretical spectrum (solid black line). As

we can see moving down the figure (i.e., for increasing W ), more smoothing tends to reduce

the error variance, but at the cost of increasing bias. Effectively, the additional smoothing

“blurs out” the humps in the true spectrum. For example, with no zero-padding (N = 270),

the peak in the spectral density at 40 quarters is (on average) hardly detected once we have

any smoothing at all. Meanwhile, moving rightward across the figure (i.e., for increasing

N), we see that more zero-padding tends to reduce the bias (and in particular, allows for

the humps surrounding the peaks to be better picked up on average), but typically increases

the error variance. As these properties suggest, by appropriately choosing the combination

of zero-padding and smoothing, one can minimize the error variance while maintaining the

ability to pick up the key features of the true spectrum (e.g., the peaks at 20 and 40 quarters).
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Figure 1: Theoretical Spectral Density (Sum of Three AR(2))
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Notes: Figure shows the theoretical spectral density of the sum of three independent AR(2)
processes, which have peaks in their spectral densities at, respectively, 20, 40 and 100
quarters.

5



Figure 2: Effects of Smoothing and Zero-Padding (Sum of Three AR(2))

N = 270 N = 512 N = 1024 N = 2048

W = 1

4 6 24 32 40 50 60

Periodicity

0

0.5

1

1.5

2
×10

4

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

0.5

1

1.5

2

2.5
×10

4

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

0.5

1

1.5

2

2.5
×10

4

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

0.5

1

1.5

2

2.5
×10

4

Theoretical

Average

W = 5

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

16000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

0.5

1

1.5

2
×10

4

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

0.5

1

1.5

2
×10

4

Theoretical

Average

W = 13

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

5000

10000

15000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Theoretical

Average

W = 21

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

Theoretical

Average

4 6 24 32 40 50 60

Periodicity

0

2000

4000

6000

8000

10000

12000

14000

16000

Theoretical

Average

Notes: Figure shows estimates of the spectral density using simulations of the sum of three indepen-
dent AR(2), which have peaks in their spectral densities at, respectively, 20, 40 and 100 quarters.
The black line is the theoretical spectrum, the solid grey line is the average estimated spectrum
over 1,000,000 simulations, and the dotted grey lines corresponds to that average ± one standard
deviation. W is the length of the Hamming window (smoothing parameter) and N is the number
of points at which the spectral density is evaluated (zero-padding parameter).
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D.5 Smoothing and Zero-Padding with Non-Farm Business Hours
per Capita

Figure 3 presents estimates of the spectral density of U.S. Non Farm Business Hours per

Capita for different choices of the zero-padding parameter (N) and different lengths of the

Hamming window (W ). The results indicate that, as long as the amount of zero-padding

is not too small (i.e., N larger), we systematically observe the peak at around 40 quarters

in the spectral density. In fact, it is only with minimal zero-padding (N low) and a wide

smoothing window (W high) that the peak is entirely washed out. We take this as evidence

of the robustness of that peak.

D.6 Detrending with a Polynomial Trend

In this section, we check that detrending our hours series with a polynomial trend of degrees

1 to 5 does not affect our main finding; namely, the existence of a peak in the spectrum at

a periodicity around 40 quarters. Plots confirming that our finding is robust to polynomial

detrending are shown in Figure 4.

D.7 Alternative Estimators

As another robustness test, we estimate the spectrum using the SPECTRAN package (for

Matlab), which is described in Marczak and Gómez [2012]. The spectrum is computed

in this case as the Fourier transform of the covariogram (rather the periodogram as we

have done thus far). Smoothing is achieved by applying a window function of length M

to the covariogram before taking its Fourier transform.7 Three different window shapes

are proposed: the Blackman-Tukey window, Parzen window, and Tukey-Hanning window.

The width of the window used in estimation is set as a function of the number of samples

of the spectrum. In the case where no zero-padding is done (N = 270), these “optimal”

widths correspond to lengths of, respectively, M = 68, 89, and 89 quarters for the three

methods.8 Figure 5 shows the estimated spectrum of Non Farm Business hours for the

7Specifically, the k-th-order sample autocovariance is first multiplied by w(|k|), where the window function
w is an even function with the property that maxkw(k) = w(0) = 1, and the window length M > 0 is such
that w(|k|) 6= 0 for |k| = M − 1 and w(|k|) = 0 for |k| ≥M .

8Note that, in contrast to the kernel-smoothing case, in this case a wider window corresponds to less
smoothing.
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Figure 3: Changing Smoothing and Zero-Padding
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Notes: Figure shows estimates of the spectral density of U.S. Non-Farm Business Hours per Capita
over the sample 1947Q1-2015Q2. The different lines correspond to estimates of the spectral density
of hours in levels (black line) and of 101 series that are high-pass (P ) filtered version of the levels
series, with P between 100 and 200 (thin grey lines). W is the length of the Hamming window
(smoothing parameter) and N is the number of points at which the spectral density is evaluated
(zero-padding parameter).
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Figure 4: Using a Polynomial Trend of Various Orders for Benchmark Smoothing (W = 13)
and Zero-Padding (N = 1024)
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(c) Order 3 (d) Order 4
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Notes: Figure shows estimates of the spectral density of U.S. Non-Farm Business Hours per Capita
over the sample 1947Q1-2015Q2, when polynomial trends of order 1 to 5 have been removed from
the data. The different lines correspond to estimates of the spectral density of hours in levels
(black line), of hours detrended with a polynomial trend (thick grey line) and of 101 series that are
high-pass (P ) filtered version of the levels series, with P between 100 and 200 (thin grey lines).
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three windows and with or without zero-padding (N = 270, 512, or 1024). Results again

confirm the existence of a peak at a periodicity around 40 quarters, as long as there is enough

zero-padding.

Figure 5: Non-Farm Business Hours with Various Windows and Estimation Using the Co-
variogram
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Notes: Notes: This Figure shows estimates of the spectral density of U.S. Non Farm Business
Hours per Capita over the sample 1947Q1-2015Q2, as computed from the covariogram using the
SPECTRAN package. The different lines correspond to estimate of the spectral density of hours in
levels (black line) and of 101 series that are high-pass (P ) filtered version of the levels series, with P
between 100 and 200 (thin grey lines). N is the number of points at which is evaluated the spectral
density (zero padding).
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E Steps in Deriving the Equilibrium of the New Key-

nesian Model with Financial Frictions and Durables

E.1 The Model

Households

There is a continuum of mass one of households indexed by i who purchase consumption ser-

vices from the market. The preferences of agent i are given by E0

∑
t β

tξt−1[U (Cit − γCt−1)+

ν(1− Lit)], with U ′(·) > 0, U ′′(·) < 0, ν ′(·), ν ′′(·) < 0 and 0 ≤ γ < 1− δ. Cit represents the

consumption services purchased by household i in period t, Ct denotes the average level of

consumption in the economy, β is the discount factor, and ξt denotes an exogenous shock to

the discount factor at date t. Note that this preference structure assumes the presence of

external habit. Household i’s problem takes the form

maxE0

∞∑
t=0

βtξt−1 [U (Cit − γCt−1) + ν(1− Lit)]

subject to

PtCit + (1 + rt−1)Bit + P x
t Dit = Bit+1 + rxtXit + wtLit + Γit,

Xit+1 = (1− δ)Xit +Dit.

Here, Bit+1 represents the borrowing by the household at time t, to be repaid with interest

at t + 1, rt represents the nominal interest rate faced by the household on such borrowing,

wtLit is labor income, Xit represents the stock of durable goods (or houses) held by the

household at the beginning of period t, Γit are firm profits that are returned to households,

and Dit the quantity of new durable goods purchased by the household at t. Pt and P x
t

are the (nominal) prices of consumption services and new durable goods, respectively, at

date t. Households are assumed to buy all of their consumption services—including those

derived from durable goods—from the market. Specifically, households do not consume the

services of their durable goods directly. Instead, they rent Xit out to firms each period

at nominal rental rate rxt . Firms then combine the rented stock of durables with labor in

order to produce consumption services, C, as well as new durable goods, D, in a manner to

be described shortly. Under these conditions, dropping i subscripts, the household’s Euler
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equation with respect to their optimal choice of C takes the familiar form:

U ′ (Ct − γCt−1) = βtEt [U (Ct+1 − γCt) (1 + rt − πt+1)] , (E.3)

where πt+1 is the inflation rate from t to t+ 1, and βt ≡ β ξt
ξt−1

. Note that we have here used

the approximation 1+r
1+π

= 1 + r − π.

The households problem also leads a labor supply decisions represented by

ν ′(Lt)

U ′ (Ct − γCt−1)
=
wt
Pt

and an arbitrage condition between the holding of bonds and capital given by

Et
[
U ′ (Ct+1 − γCt)

Pt+1

{
(1 + rt)−

(
rxt+1 + (1− δ)P x

t+1

P x
t

)}]
= 0.

Final Good producers

The final good sector is competitive. This sector provides consumption services to households

by buying a set of differentiated intermediate services, denotes Cjt, from intermediate good

firms. We assume a measure one of intermediate good firms, indexed by j. The technology

of the final good firms is

Ct =

(∫ 1

0

Cη
jtdj

) 1
η

, (E.4)

with η ∈ (0, 1). The objective of the final good firm is thus to solve

maxPtCt −
∫ 1

0

PjtCjtdj

subject to (E.4), where pjt is the price of intermediate good j. This gives rise to demand for

intermediate good j given by

Cjt =

(
Pjt
Pt

)− 1
1−η

Ct.

Intermediate good firms

Intermediate good producers are monopolistically competitive and take the demand from

final good firms as given. We assume that intermediate firms produce an intermediate factor

M according to the technology

Mjt = BF (ΘtLjt) .
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A fixed fraction (1− ϕ) of that factor is transformed one to one into consumption services,

whereas the use of the rented stock of durables also produces consumption services with a

one to one technology, so that the amount of consumption services produced by intermediate

firm j is

Cjt = Xjt + (1− ϕ)Mjt = Xjt + (1− ϕ)BF (ΘtLjt) . (E.5)

The remaining fraction ϕ of the intermediate factor M is transformed one to one into durable

goods D, so that

Djt = ϕMjt = ϕBF (ΘtLjt) .

Period-t profits of an intermediate good producer are given by

Γjt = PjtCjt + PX
t Djt − rxtXjt − wtLjt.

Cost minimisation implies that

wt =
(
(1− ϕ)rxt + ϕP x

t

)
ΘtBF

′ (ΘtLjt) .

Hence, assuming F ′′ < 0, all intermediate good firms will hire the same amount of labor

(i.e., Ljt = Lt), which implies that the aggregate capital stock will satisfy

Xt+1 = (1− δ)Xt + ϕBF (ΘtLt) . (E.6)

With the normalisation B = 1
1−ϕ and denoting ψ = ϕ

1−ϕ , we obtain

Ct = Xt + F (ΘtLt) (E.7)

and

Xt+1 = (1− δ)Xt + ψF (ΘtLt) . (E.8)

Setting of interest rates

We assume that the interest rate faced by households is equal to the policy rate set by

the central bank (which we denote it) plus a risk premium rpt ; that is, we assume that

rt = it + rpt . We directly allow for counter-cyclical risk premium by positing rpt to be a

non-increasing function of the level of employment in the economy, Lt, via

rpt = R(Lt), R′(Lt) ≤ 0.

13



In setting the policy rate it, we assume that the central bank follows a slightly modified

Taylor-type rule where the interest rate reacts to expected inflation and to expected labor

market conditions via

it = φπEt [πt+1] + φ`Et [G (Lt+1)] , φπ, φ`, G
′ > 0. (E.9)

Equilibrium in the absence of sticky prices

In the absence of sticky prices, all intermediate good producers will act in the same manner

and set Pjt as a mark-up over the marginal cost, implying that

Pjt =
rxt

1− η
.

The equilibrium values for {P x
t , wt, r

x
t , Pt, rt, πt, it, Lt, Ct, Xt} are given as the solution to

the set of equations:

U ′ (Ct − γCt−1) = βtEt [U (Ct+1 − γCt) (1 + rt − πt+1)] ,

ν ′(Lt)

U ′ (Ct − γCt−1)
=
wt
Pt
,

Et
[
U ′ (Ct+1 − γCt)

Pt+1

{
(1 + rt)−

(
rxt+1 + (1− δ)P x

t+1

P x
t

)}]
= 0,

wt = (rxt + ψP x
t )ΘtF

′ (ΘtLt) ,

Pt =
rxt

1− η
,

Ct = Xt + F (ΘtLt) ,

Xt+1 = (1− δ)Xt + ψF (ΘtLt) ,

it = φπEt [πt+1] + φ`Et [G (Lt+1)] ,

πt =
Pt
Pt−1

,

rt = it +R(Lt).

In fact, this system does not determine the level of Pt, but instead gives solutions for

{P
x
t

Pt
, wt
Pt
,
rxt
Pt
, πt, it, rt, Lt, Ct, Xt}.
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With sticky prices

Assume now that intermediate firms are confronted to price stickiness, in that the arrival

of the option to change their price follows a Poisson process. In that case, the previous

equilibrium conditions are not affected except for the two equations

Pt =
rxt

1− η
(E.10)

Ct = Xt + F (ΘtLt) ; (E.11)

With sticky prices, the pricing equation (E.10) is replaced by a pricing equation for a firm that

adjusts its price, with the result that the price is set to essentially be a markup on expected

discounted marginal cost. From this we can derive a Phillips curve following standard steps.

Aggregate output in the presence of sticky prices is now be given by

Ct =

(∫ 1

0

(Xjt + F (ΘtLjt))
ρ dj

) 1
ρ

,

where this differs from (E.11) because of the distribution in Xjt. The Xjt will satisfy the

equation

Xjt − F (ΘtLjt) =

(
Pjt
Pt

) −1
1−ρ

Ct

One important approximation step we are taking in the paper is that we disregard the impact

of production dispersion on aggregate output, and are indeed assuming that (E.11) holds

even in the case with sticky prices, while this is only approximatively true.

Deriving the linear reduced form

With the assumption φπ = 1, we can bypass the need to be explicit about the intermediate

firm’s pricing problem and its implications for inflation, as the realisations of inflation do

not feed back into the determination of the quantity variables that are of interest to us.

Specifically, substituting (E.9) (with φπ = 1) and (E.11) into the Euler Equation (E.3), and

denoting επt+1 = Et [πt+1]− πt+1, we obtain:

U ′
(
Xt + F (θtLt)− γ (Xt−1 + F (θt−1Lt−1))

)
=

βtEt
{
U ′
(
Xt+1 + F (θt+1Lt+1)− γ (Xt + F (θtLt))

)
×
(
1 + επt+1 + φ`G (Lt+1) +R (Lt)

)}
. (E.12)
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We assume the following functional forms. The utility function is U(z) = − exp
{
− z
ω

}
,

ω > 0, the production of new goods is given by F (ΘL) = ln(ΘL), the interest rate policy

function is G(L) = ln(L), and Θt is constant. With the approximation ln(1 + z) ≈ z, we

have

ln
(
1 + επt+1 + φ`G (Lt+1) +R (Lt)

)
≈ επt+1 + φ` lnLt+1 +R (Lt) .

Therefore, (E.12) can be rewritten, with the approximation E[ln(z)] ≈ ln(E[z]):

1

ω
(Xt + ln Θ + lnLt − γ (Xt−1 + ln Θ + lnLt−1)) =

ln βt +
1

ω
(Et [Xt+1] + ln Θ + Et [lnLt+1]− γ (Xt + ln Θ + lnLt))

+ Et
[
επt+1

]
+ φ`Et [lnLt+1] +R (Lt) . (E.13)

Given that Et
[
επt+1

]
= 0, this equations rewrites, using `t = lnLt,

`t = µt − α̂1Xt + α̂2`t−1 + α̂3Et [`t+1] + F̂ (`t), (E.14)

where µt = 1
κ

[
ψ
(
1− γ

1−δ

)
ln Θ− ω ln βt

]
, α̂1 = δ

κ

(
1− γ

1−δ

)
, α̂2 = γ

κ

(
1− ψ

1−δ

)
, α̂3 = 1−ωφ`

κ

and F̂ (`t) = −ω
κ
R̃ (`t), with κ = 1 + γ − ψ > 0.

Equation (E.14) and the accumulation Equation (E.8) together form a two-variable linear

system in X and `. It is worth noticing that inflation π does not appear anywhere. Since

C and D can be obtained from X and L, it then follows that all quantity variables are

determined independently from the inflation rate.

F Solving and Estimating the Model

F.1 Solution Method

F.1.1 Solving a Deterministic Version of the New Keynesian Model

Consider the deterministic version of our model, with all variables expressed as deviations

from the steady state. We can write our dynamic economic system as(
yt+1

`t+1

)
=

(
f (yt, `t)
g (yt, `t)

)
≡ h (yt, `t) , (F.15)

where yt = (Xt, `t−1)′ is the vector of predetermined variables, h (0) = 0, and y0 is given.

Letting xt ≡ (y′t, `t)
′, a solution is a function φ : R2 → R such that, after setting `0 = φ (y0),
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the resulting sequence {xt} obtained from (F.15) satisfies the transversality condition (TVC)

lim supt→∞ ‖xt‖ <∞ (i.e., the system remains bounded). Suppose this φ exists and is unique,

and let x (t; y) ≡ ht (y, φ (y))9 denote the state at date t when y0 = y and `0 = φ (y) (i.e., we

have xt = x (t; y0)). Letting

M≡
{
x (0; y) : y ∈ R2

}
⊂ R3,

it must be the case that x (t; y) ∈ M for all t, y.10 That is, M is the unique 2-dimensional

invariant manifold11 of h such that system (F.15), when restricted to M, produces non-

explosive dynamics.12 In this case, φ is the function that projects x onto M by choice of

l. We henceforth make the following assumption about φ (if it exists), which is necessary

if we are to solve for it using perturbation methods (as we do below): φ is analytic on a

neighborhood of the steady state.

To find M, let A ≡ Dxh (0),13 and write the linearized version of (F.15) as.

xt+1 = Axt. (F.16)

Let E ⊂ R3 be a 2-dimensional invariant subspace ofA; that is, (a) E = {αz1 + βz2 : α, β ∈ R}

for some linearly independent basis vectors z1, z2 ∈ R3, and (b) if x ∈ E then Ax ∈ E . Note

that there are at most three possible such subspaces.14 Given such an E , we look for a can-

didate M as the 2-dimensional invariant manifold of (F.15) with the following properties:

9We use ht to denote the t-th iterate of h; i.e., h0 is the identity function and ht ≡ h ◦ ht−1 for t ≥ 1.
10To see this, let y (t; y) denote the first two elements of x (t; y) and l (t; y) the third, and note that the

trajectory passing through x (t; y) ≡
(
y (t; y)

′
, l (t; y)

)′
remains bounded by construction. Furthermore, also

by construction, the trajectory passing through x (0; y (t; y)) ≡
(
y (t; y)

′
, φ (y (t; y))

)′
remains bounded as

well. If l (t; y) 6= φ (y (t; y)), then if we had y0 = y (t; y) there would be two different solutions for `0 that
produce bounded trajectories, which contradicts our supposition that φ is unique.

11A manifold M̃ is said to be h-invariant if x ∈ M̃ implies h (x) ∈ M̃.
12That is, M is precisely the “non-explosive manifold” referred to in the text.
13Here, the notation Dz indicates the partial derivative operator with respect to the vector z.
14To ensure this, we must actually impose the following additional technical requirement in constructing
E : if the algebraic multiplicity of an eigenvalue λ of A is greater than one, and E contains a generalized
eigenvector corresponding to λ, then E must contain all of the generalized eigenvectors corresponding to λ.
We henceforth impose this requirement. As a consequence, if the three eigenvalues of A are all real and
distinct, then there are three E ’s; namely, those associated with the three possible ways of choosing two
linearly independent eigenvectors of A as the basis vectors z1 and z2. If instead A has an eigenvalue λ with
an algebraic multiplicity of two, then there is only one E ; i.e., the one given by the generalized eigenspace
of λ. If instead A has a complex conjugate pair of eigenvalues, then there is also only one E ; i.e., the one
obtained by taking Re (v) and Im (v) as the basis vectors, where v is any eigenvector associated with one of
the complex eigenvalues. Finally, if A has an eigenvalue with an algebraic multiplicity of three, then such
an E does not exist.
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(a) M is tangent to E at the steady state; and (b) the associated projection function φ is

analytic on a neighborhood of the steady state.15 Given a candidate M and the associated

φ, we can then obtain an expression for the evolution of yt on M as

yt+1 = θ (yt) ≡ f (yt, φ (yt)) .

Using this expression, we can check numerically whether indeed trajectories on the candidate

M remain bounded. If they do, thenM continues to be a candidate non-explosive manifold;

otherwise, we rule it out. We can check all possible E ’s and their associated candidateM’s in

this way. If, after doing so, we have found more than one candidateM, then we conclude that

the solution is indeterminate (i.e., that φ is not unique). If, on the other hand, all candidate

M’s contain unbounded trajectories, then we conclude that no solution exists. Finally, if

exactly one candidate M is found whose trajectories are bounded, then we conclude that

M is indeed the non-explosive manifold we sought.16

F.1.2 Finding φ Using Perturbation Methods

Given a subspace E as defined above, the associated candidate φ (which fully determines

M) will in general not possess a closed-form solution. We thus solve for φ up to a k-th-order

Taylor approximation around the steady state as follows. First, note that, by invariance of

M, φ must implicitly solve17

φ (f (y, φ (y))) = g (y, φ (y)) . (F.17)

Differentiating (F.17) once with respect to y and evaluating at y = 0 yields

Dyφ · [Dyf +Dlf ·Dyφ] = Dyg +Dlg ·Dyφ, (F.18)

which is a quadratic system in the two elements of Dyφ. In general, this equation has a

multiplicity of solutions. However, Dyφ is, by definition,18 the function that projects x onto

15In general, there are an uncountably infinite number of manifolds satisfying requirement (a), but only
one of these manifolds also satisfies requirement (b).

16If A has either an eigenvalue with an algebraic multiplicity of two or a complex conjugate pair of
eigenvalues, so that there is only one E , then we also need to verify that trajectories passing through points
not on M do become unbounded. If they do not, then we also conclude in this case that the solution is
indeterminate.

17This expression can be obtained from (F.15) by using the “invariance” relationships `t = φ (yt) and
`t+1 = φ (yt+1), and the fact that yt+1 = f (yt, `t).

18In particular, we are using here the fact that M is tangent to E at the steady state.
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E by choice of l. It can be verified that this projection function—which can be obtained

using standard eigenvalue-eigenvector methods—is indeed a solution to (F.18). This gives

us a candidate φ up to a first-order approximation.

To obtain the desired k-th-order approximation, we proceed iteratively as follows. Sup-

pose we have in hand a (j − 1)-th order approximation. To obtain the j-th-order approxima-

tion, obtain all j-th-order derivatives of the expression (F.17) and evaluate them at y = 0.

We can express the result as a system of linear equations in the j-th-order derivatives of φ,

with coefficients that are functions of the known derivatives of φ up to (j − 1)-th order. It

is thus straightforward to solve this system for the j-th-order derivatives.

F.1.3 Extension to the Stochastic Case

Write the stochastic version of the model as(
yt+1

Et [`t+1]

)
=

(
f (yt, `t, µt;σt)
g (yt, `t, µt;σt)

)
≡ h (yt, `t, µt;σt) , (F.19)

with µt = ρµt−1 + σtηt, ηt ∼ N (0, 1), and σt = σ.19 Write the augmented state vector

of this system as zt = (x′t, µt, σt)
′. Whereas before the solution φ was the function that

projected the system onto a manifold M in x-space, in the stochastic environment the

corresponding manifold is in z-space, and in particular, φ : R4 → R is the function such that

(a) `t = φ (yt, µt;σ) for all t satisfies (F.19), and (b) the sequence generated by

yt+1 = θ (yt, µt;σ) ≡ f (yt, φ (yt, µt;σ) , µt;σ)

satisfies the stochastic TVC, lim supt→∞ E0 ‖yt‖ <∞.

Noting that Dσh (0) = 0 in our setup, and taking date-t expectations of both sides of the

linearized version of (F.19), we may obtain

Et [zt+1] =

0
0
σ

+

Ax Aµ 0
0 ρ 0
0 0 0


︸ ︷︷ ︸

A

zt, (F.20)

where Ax ≡ Dxh (0) and Aµ ≡ Dµh (0). Note that ρ and 0 are eigenvalues of A, and let vρ

and v0 denote corresponding eigenvectors. Let E be a 4-dimensional invariant subspace of

19The reason we introduce σt as a (degenerate) state variable should become apparent shortly.
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A such that vρ, v0 ∈ E ; that is, (a) E =
{∑4

j=1 αjzj : αj ∈ R, j = 1, . . . , 4
}

for some linearly

independent basis vectors zj ∈ R5, (b) vρ, v0 ∈ E , and (c) if x ∈ E then Ax ∈ E . Note that,

as in the non-stochastic case, there are at most three possible such subspaces.

Given such an E , we look for a candidate M (or, equivalently, the associated projection

function φ) in a similar way to the non-stochastic case. That is, we seek the 4-dimensional

manifoldM with the following properties: (a) `t = φ (yt, µt;σ) for all t satisfies the expression

(F.19); (b)M is tangent to E at the non-stochastic steady state zt = 0; and (c) the function

φ is analytic on a neighborhood of the non-stochastic steady state. After obtaining the

candidate M for each possible E , we can then check numerically whether the stochastic

TVC is satisfied for exactly one of these candidate M’s, in which case we have found the

desired solution.

As in the non-stochastic case, we cannot in general find φ analytically. However, from

(F.19), we may obtain that φ implicitly solves

E [φ (f (y, φ (y, µ;σ) , µ;σ) , ρµ+ ση;σ)] = g (y, φ (y, µ;σ) , µ;σ) , (F.21)

where the expectation on the left-hand side of (F.21) is taken over realizations of the i.i.d.

N (0, 1) random variable η. Note also that the other time-varying variables in this expression

(i.e., y and µ) are determined independently of η. We can thus easily solve for the k-th-order

Taylor approximation to φ around the non-stochastic steady state z = 0 in a manner similar

to the non-stochastic case by sequentially differentiating the expression (F.21) with respect

to the vector (y, µ;σ).

F.2 Estimation Procedure

To estimate the model, we use an indirect inference method as follows. Let xt ∈ Rn denote

a vector of date-t observations in our data set, t = 1, . . . , T , and let xT ≡ (x′1, . . . , x
′
T )′

denote the full data set in matrix form. Let F : RT×n → Rq be the function that generates

the q-vector of features of the data we wish to match (i.e., F (xT ) is a vector containing all

relevant spectrum values, plus the correlation, skewness and kurtosis for hours and the risk

premium).

Suppose we simulate M data sets of length T from the model using the parameterization
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θ. Collect the m-th simulated simulated data set in the matrix x̃mT (θ) ∈ RT×n, m = 1, . . . ,M .

The estimation strategy is to choose the parameter vector θ to minimize the Euclidean

distance between F (xT ) and the average value of F (x̃mT (θ)), i.e., we seek the parameter

vector

θ̂ = argmin
θ∈Θ

[
F (xT )− 1

M

M∑
m=1

F (x̃mT (θ))

]′ [
F (xT )− 1

M

M∑
m=1

F (x̃mT (θ))

]
,

where Θ is the parameter space. In practice, we simulate M = 3,000 data sets for each

parameter draw, and estimate θ̂ using Matlab ’s fminsearch optimization function.

F.2.1 The Parameter Space

We estimate the nine parameters of the model imposing several restrictions on the parameter

space Θ. First, we require that the habit parameter γ and durables-share parameter ψ be

non-negative and less than one, i.e., 0 ≤ γ, ψ < 1. Second, we require that the policy rate

reacts positively to expected hours, but not so strongly as to cause current hours to fall

in response to an increase in expected hours, i.e., 0 < φ` < 1/ω. Third, we impose that

R̃′ (0) ≤ 0 (i.e., we have complementarity near the steady state), but that the degree of

complementarity is never so strong as to generate static multiple equilibria.20 This latter

property is ensured if the function ̂̀+ω
κ
R̃
(̂̀) is strictly increasing in ̂̀(so that it is invertible),

which requires 0 ≥ R̃1 > −1+γ−ψ
ω

and R̃3 >
ωR̃2

2

3(1+γ−ψ+ωR̃1)
. Fourth, we impose that the shock

process is stationary, i.e., |ρ| < 1. Finally, we require that the parameters be such that

a solution to the model exists and is unique (see Appendix F.1). None of the estimated

parameters is on the boundary of the set of constraints we have imposed.

20By static multiple equilibria, we mean a situation where, for a given X̂t, ̂̀t−1 and expectation about̂̀
t+1, there are multiple values of ̂̀t consistent with the dynamic equilibrium condition.
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