Real Keynesian Models and Sticky Prices

Paul Beaudry, Chenyu (Sev) Hou & Franck Portier Bank of Canada, UBC & UCL

April 15th, 2019 Royal Economic Society Annual Conference The University of Warwick

Introduction : Demand Shocks

- In many (most) macro models, "demand" shocks (optimism, positive sentiment, good news, possibly lax credit,...) are expansionary because of of sticky prices.
- ► (much smaller) literature which suggest that sticky prices may not be necessary for demand shocks to be expansionary. ~> Real Keynesian models
 - $\times~$ Angeletos-La'O, Angeletos-Lian, Angeletos-Collard-Dellas,
 - \times Guerrieri-Lorenzoni, Lorenzoni,
 - \times Beaudry-Portier, Beaudry-Galizia-Portier,
 - imes ... etc
- Question addressed in this paper: should we care?

Introduction: The Question

- Suppose one accepts the evidence that nominal prices are sticky, so that demand is non-neutral,
- Is it important to have another channel through which demand shocks would be expansionary even absent of sticky prices?
- ▶ In particular, is it important for
 - 1. our understanding of how monetary shocks affect the economy?
 - 2. our understanding the conduct of monetary policy?
- ► It is.

Introduction: Two Contributions

Contributions

- 1. Propose a new class of simple extensions of the *New Keynesian* model (a *Real Keynesian* model) that has very different implications for monetary policy **when prices are sticky**.
- 2. Show that it is empirically relevant

Introduction: Two Contributions

Contributions

- 1. Propose a new class of simple extensions of the *New Keynesian* model (a *Real Keynesian* model) that has very different implications for monetary policy **when prices are sticky**.
- 2. Show that it is empirically relevant

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Zero Lower Bound and Missing Deflation

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Zero Lower Bound and Missing Deflation

- ▶ No technology shock $c_t = \ell_t$
- Model with sticky prices:

$$\ell_t = E_t \ell_{t+1} - \alpha_r (i_t - E_t \pi_{t+1}) + d_t \qquad \text{Euler Equation (EE)} \\ \pi_t = \beta E_t \pi_{t+1} + \kappa \ mc_t \qquad \text{Phillips Curve (PC)}$$

- ▶ Marginal cost is assumed to depend on labor market tightness (real wage) \rightsquigarrow $mc_t = \gamma_\ell \ell_t$
- ▶ When prices are fully flexible:

$$\ell_t = E_t \ell_{t+1} - \alpha_r r_t + d_t \qquad \text{Euler Equation (EE)}$$
$$mc_t = 0 = \gamma_\ell \ell_t \qquad \text{Aggregate Supply (AS)}$$

Flex price NK model :

$$\ell_t = E_t \ell_{t+1} - \alpha_r r_t + d_t \quad (EE)$$
$$0 = \gamma_\ell \ell_t \qquad (AS)$$

i.i.d. case :

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t \qquad (AS)$$

- ▶ Let's have a more general model in which AS is not infinitely sloped.
- Assume now that marginal cost also depend on the real interest rate r (cost channel)

$$mc_t = \gamma_\ell \ell_t + \gamma_r r_t$$

<u>*i.i.d.*</u> case :

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t + \gamma_r r_t \qquad (AS)$$

<u>i.i.d.</u> case :

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t + \gamma_r r_t \qquad (AS)$$

• Assume
$$\gamma_r = 0$$

<u>*i.i.d.*</u> case :

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t + \gamma_r r_t \qquad (AS)$$

 Assume γ_r is large (compared to γ_ℓ)

Towards An Extended Model

- ▶ Importance of the cost channel: $\frac{\gamma_r}{\gamma_{\ell}} \leq \alpha_r$
- ▶ In the *i.i.d.* case, the model is *Real Keynesian* if $\frac{\gamma_r}{\gamma_{\ell}} > \alpha_r$
- ▶ Need to go beyond the *i.i.d.* case
- $\blacktriangleright \ \rightsquigarrow$ Expectations in the Euler equation will matter

Extended Sticky Price Linearized Model

$$\ell_{t} = \frac{\alpha_{\ell} E_{t} \ell_{t+1} - \alpha_{r} (i_{t} - E_{t} \pi_{t+1}) + d_{t}}{\text{Euler Equation (EE)}}$$

$$\pi_{t} = \beta E_{t} \pi_{t+1} + \kappa (\gamma_{\ell} \ell_{t} + \gamma_{r} (i_{t} - E_{t} \pi_{t+1}))$$

Phillips Curve (PC)

Two changes:

- $\label{eq:alpha} \begin{array}{l} \times \quad \alpha_\ell \leq 1 : \mbox{ Add asymmetric information: some households always repay their debt, some do only if it is in their interest, with psychological cost of defaulting <math display="inline">\rightsquigarrow$ positively sloped cost of funds \rightsquigarrow discounted EE
- $\times~\gamma_r \geq$ 0: Firms need to borrow to pay for intermediate inputs before production \rightsquigarrow cost channel
- ▶ Nothing novel, except for putting them together.
- ▶ Note: standard NK model: $\alpha_{\ell} = 1$, $\gamma_r = 0$
- Here only demand shock (news shock, β shock,...)
- $\blacktriangleright\,$ To remember: $\alpha{'}{\rm s}$ for the EE, $\gamma{'}{\rm s}$ for the PC

Under which condition is demand expansionary with flex prices when shocks are persistent?

$$\ell_t = \alpha_{\ell} E_t \ell_{t+1} - \alpha_r r_t + d_t \qquad \text{Euler Equation (EE)} \\ 0 = \gamma_{\ell} \ell_t + \gamma_r r_t \qquad \text{Marginal cost (AS)}$$

The RK condition

Result 1

With flex. prices, positive demand shocks (both current and expected future) of any persistence have a positive effect on ℓ if and only if

$$\frac{\gamma_r}{\gamma_\ell} > \frac{\alpha_r}{(RK)}$$

The RK condition

Result 1

With flex. prices, positive demand shocks (both current and expected future) of any persistence have a positive effect on ℓ if and only if

$$rac{\gamma_r}{\gamma_\ell} > rac{lpha_r}{(1-lpha_\ell)} \qquad (RK)$$

The Model With Sticky Prices (From now on)

$$\ell_t = \alpha_{\ell} E_t \ell_{t+1} - \alpha_r (i_t - E_t \pi_{t+1}) + d_t$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (\gamma_{\ell} \ell_t + \gamma_r (i_t - E_t \pi_{t+1})) + \mu_t$$
(PC)

The Model With Sticky Prices (From now on)

$$\ell_{t} = \alpha_{\ell} E_{t} \ell_{t+1} - \alpha_{r} (i_{t} - E_{t} \pi_{t+1}) + d_{t}$$

$$\pi_{t} = \beta E_{t} \pi_{t+1} + \kappa (\gamma_{\ell} \ell_{t} + \gamma_{r} (i_{t} - E_{t} \pi_{t+1})) + \mu_{t}$$

$$i_{t} = E_{t} \pi_{t+1} + \phi_{\ell} \ell_{t} + \nu_{t}$$
(Policy Rule)

The Model With Sticky Prices (From now on)

$$\ell_{t} = \alpha_{\ell} E_{t} \ell_{t+1} - \alpha_{r} (i_{t} - E_{t} \pi_{t+1}) + d_{t}$$

$$\pi_{t} = \beta E_{t} \pi_{t+1} + \kappa (\gamma_{\ell} \ell_{t} + \gamma_{r} (i_{t} - E_{t} \pi_{t+1})) + \mu_{t}$$

$$i_{t} = E_{t} \pi_{t+1} + \phi_{\ell} \ell_{t} + \nu_{t}$$
(Policy Rule)

Theorem 1

For any Taylor rule $i_t = \tilde{\phi}_{\pi} \pi_t + \tilde{\phi}_{\ell} \ell_t + \tilde{\nu}_t$ that gives determinacy, there exists a policy rule $i_t = E_t \pi_{t+1} + \phi_{\ell} \ell_t + \nu_t$ that produces the same allocations.

Result 2

With policy rule $\phi_{\ell} > 0$, the economy is determinate for all admissible parameter values.

Result 3

With sticky prices, RK and NK configurations are not qualitatively distinguishable for demand and markup shocks.

Result 3

With sticky prices, RK and NK configurations are not qualitatively distinguishable for demand and markup shocks.

i.i.d. case :

$\ell_t = \alpha_r r_t + d_t$	(EE)
$\pi_t = \kappa \big(\gamma_\ell \ell_t + \gamma_r r_t \big) + \mu_t$	(PC)
$r_t = \phi_\ell \ell_t + \nu_t$	(Policy Rule)

Result 3

With sticky prices, RK and NK configurations are not qualitatively distinguishable for demand and markup shocks.

<u>i.i.d.</u> case :

 $\begin{aligned} \ell_t &= \alpha_r r_t + d_t & (EE) \\ \pi_t &= \kappa \big(\gamma_\ell \ell_t + \gamma_r r_t \big) + \mu_t & (PC) \\ r_t &= \phi_\ell \ell_t + \nu_t & (Policy Rule) \end{aligned}$

Result 3

With sticky prices, RK and NK configurations are not qualitatively distinguishable for demand and markup shocks.

<u>i.i.d.</u> case :

 $\begin{aligned} \ell_t &= \alpha_r r_t + d_t & (EE) \\ \pi_t &= \kappa \big(\gamma_\ell \ell_t + \gamma_r r_t \big) + \mu_t & (PC) \\ r_t &= \phi_\ell \ell_t + \nu_t & (Policy Rule) \end{aligned}$

Result 3

With sticky prices, RK and NK configurations are not qualitatively distinguishable for demand and markup shocks.

<u>i.i.d.</u> case :

 $\begin{aligned} \ell_t &= \alpha_r r_t + d_t & (EE) \\ \pi_t &= \kappa \big(\gamma_\ell \ell_t + \gamma_r r_t \big) + \mu_t & (PC) \\ r_t &= \phi_\ell \ell_t + \nu_t & (Policy Rule) \end{aligned}$

Result 3

With sticky prices, RK and NK configurations are not qualitatively distinguishable for demand and markup shocks.

<u>i.i.d.</u> case :

 $\ell_t = \alpha_r r_t + d_t$ (EE) $\pi_t = \kappa (\gamma_\ell \ell_t + \gamma_r r_t) + \mu_t$ (PC) $r_t = \phi_\ell \ell_t + \nu_t$ (Policy Rule)

RK Matters for Monetary Policy and Monetary Shocks

- Monetary Policy and Stabilization
- Determinacy under i peg
- Monetary Shocks

Effects of Stabilization with Demand Shocks

$$i_t = E_t \pi_{t+1} + \phi_\ell \ell_t$$

Result 4

A more aggressive policy (ϕ_{ℓ} larger) always decreases σ_{ℓ}^2 at the cost of increasing σ_{π}^2 iff the RK condition is satisfied.

Nominal Interest Rate Peg (ZLB)

Suppose policy goes from

$$E_t = E_t \pi_{t+1} + \phi_2 \ell_t$$

to

$$i_t = 0.$$

Result 5

In the NK configuration,

 \times indeterminacy

 \times in all equilibria, σ_{ℓ}^2 and σ_{π}^2 move together (conditional on demand shocks) In the RK configuration,

 \times determinacy

 $\times~\sigma_\ell^2$ increases but σ_π^2 decreases (conditional on demand shocks)

Monetary Shocks

Result 6

In response to a contractionary monetary shocks,

- ▶ If the shock is not very persistent, then NK and RK cannot be distinguished.
- ► If shock is sufficiently persistent,
 - × it increases inflation in RK case (neo-Fisherian effect)
 - imes it decreases inflation in the NK case
- RK favoured if we observe both (1) persistent monetary shock that (2) do not lead to a fall in inflation
- "Congressman Wright Patman effect" (1970) : raising interest rates to fight inflation is like "throwing gasoline on fire"

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Zero Lower Bound and Missing Deflation

Empirical Relevance Phillips Curve Only

Estimate a Phillips Curve with cost channel (1969Q1-2006Q4)

$$\pi_t = (1 - a_1)\pi_{t-1} + a_1 E_t[\pi_{t+1}] + a_2(i_t - \pi_{t+1}) + a_3\ell_t + f(t) + u_t$$

Empirical Relevance Phillips Curve Only

Estimate a Phillips Curve with cost channel (1969Q1-2006Q4)

 $\pi_t = (1 - a_1)\pi_{t-1} + a_1 E_t[\pi_{t+1}] + a_2(i_t - \pi_{t+1}) + a_3\ell_t + f(t) + u_t$

$\ell_t = UNgap$	(1)Core	CPI with	Trend	(2) Core	CPI w/o	Trend
	OLS	OLS	IV	OLS	OLS	$_{\rm IV}$
a_1	0.49^{***}	0.57^{***}	0.70^{***}	0.49^{***}	0.56^{***}	0.62^{***}
	(0.087)	(0.103)	(0.087)	(0.084)	(0.093)	(0.080)
a_2		0.21^{**}	0.31^{***}		0.16^{*}	0.15^{**}
		(0.101)	(0.111)		(0.081)	(0.075)
a_3	-0.09	-0.03	0.25	-0.05	-0.07	0.11
	(0.105)	(0.119)	(0.189)	(0.095)	(0.093)	(0.214)
Observations	152	152	152	152	152	152
K-P LM Test			29.951			16.341
(idp)			(0.038)			(0.569)
J Test			12.944			16.559
(jp)			(0.740)			(0.485)
C-D Test			2.212			0.846
Time trend	Yes	Yes	Yes	No	No	No

Empirical Relevance Full Information

- Here we estimate the full model by ML
- ► Data:
 - $\times~\pi :$ GDP deflator,
 - imes i_t : fed funds rate,
 - $\times \quad \ell_t$: minus unemployment rate.
- ► Sample:
 - \times long: 1954:3- 2007:4,
 - \times post-Volker-deflation sample: 1983:4-2007:4
- Maximum Likelihood estimation

Result 7

Estimation shows that the model is in the Real Keynesian region.

 ε_{μ}

 ε_{ν}

 ε_{ν}

Robustness

Results are robust across the 3 following sub-samples

- L Pre Volker dis-inflation period (1954:3-1979:1)
- II. Post Volker dis-inflation period (1983:4-2007:1)
- III. Zero Lower Bound period (2009:1-2016:3)
- Results robust when allowing the model to have endogenous propagation
- Results robust when allowing the model to have more shocks

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Zero Lower Bound and Missing Deflation

Low Variance of Inflation at the ZLB

		σ_u	σ_{π}	σ_i
Post-Volcker	:	1.3	.9	2.5
ZLB	:	1.7	.8	.1

- Observation: the variance of inflation slightly decreased at ZLN.
- It should have increased in the NK configuration (under the assumption that demand shocks drove the economy)
- But this is consistent with the RK configuration

The ZLB Trap

- RK framework suggest that ZLB was quasi inevitable following a persistent fall in demand.
- In RK, both the fall in demand and the response of monetary authorities favours lower inflation:
 - \times $\,$ Initial negative demand shock \rightsquigarrow
 - \times $\;$ Low activity and low inflation \rightsquigarrow
 - imes Monetary expansion stimulus \rightsquigarrow
 - \times Lower i and lower inflation \rightsquigarrow
 - \times $\,$ More monetary expansion \rightsquigarrow
 - \times Even lower *i* and inflation \rightsquigarrow
 - $\times~$ Hit the zero lower bound.

Summary

- ▶ When demand matters with flexible prices (*Real Keynesian* models), adding sticky prices affect the way we think of monetary policy:
 - $imes\,$ trade-off between stabilising inflation and output when facing demand shocks
 - \times $\;$ Determinacy at the ZLB
 - \times $\,$ Variance of inflation and output moving in opposite direction at the ZLB
- Data favours Phillips Curve with cost channel
- Data favours Real Keynesian configuration
- Main reason is that monetary shocks are persistent and they have neo-Fisherian effect

Introducing more endogenous dynamics

- Let us think of richer dynamics
 - \times Habit persistence
 - \times Hybrid New Phillips curve
 - imes Gradual adjustment of i
- ▶ It amounts to constraining more or less columns of A to be zero.

$$Y_t = AY_{t-1} + BS_t$$
$$S_t = RS_{t-1} + \varepsilon_t$$

Full Sample, "Habit Persistence"

Other configurations, Full sample

"Habit persistence, and hybrid New Phillips curve"

"Habit persistence, gradual adjustment of *i* and hybrid New Phillips curve"

Allowing for more shocks

- Enrich the analysis by:
 - \times $\;$ Allowing for explicit oil shocks
 - \times Allowing for TFP shocks
 - \times $\;$ Allowing for natural rate of employment shocks
- We find very consistent results

Real growth (Δy) as the Fourth Variable

"Fully Forward", Full sample