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Notes

I Based on my work with Paul Beaudry & Dana Galizia

I I will not take time for references, other work, etc

I Check on my webpage for papers and references

I Write me : f.portier@ucl.ac.uk
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Objective of the lecture

I Show that there is cyclicality (to be defined) in economic fluctuations. (data)

I Show that the economy might be thought as fluctuating around an unstable
steady state. (data)

I Discuss how such fluctuations can be seen as an emergent phenomenon in a
environment with interactions (theory)

I Show a fully micro-founded-general-equilibrium-rational-expectations model that
can be solved and estimated (theory and data)

I Under study : developed economies.
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Roadmap

I. Cyclicality

II. Instability

III. Generating Cycles through Dynamic Models with Interactions (theory)

IV. A Fully Specified Model
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I. Cyclicality

I Cycles are “recurrent movements in economic activity”

I Booms and busts

I Can be thought as the consequence of shocks hitting an otherwise stable
economy...

I ... Or as the very indication that that market (capitalist) economies are
intrinsically unstable.

I Let’s try to see what’s in the data.

I Start with the NBER series of 1 and 0 for expansions and recessions.
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I. Cyclicality

Table 1 – Recent U.S. Business Cycles, as identified by the NBER’s Business Cycle Dating
Committee

US Business Cycle Expansions and Contractions ¹

Contractions (recessions) start at the peak of a business cycle and end at the trough.
Please also see:

Latest announcement from the NBER's Business Cycle Dating Committee, dated 9/20/10.
Press citations on NBER Business Cycles

BUSINESS CYCLE
REFERENCE DATES DURATION IN MONTHS

Peak Trough Contraction Expansion Cycle

Quarterly dates
are in parentheses

Peak
to

Trough

Previous
trough

to
this peak

Trough
from

Previous
Trough

Peak
from

Previous
Peak

June 1857(II)
October 1860(III)
April 1865(I)
June 1869(II)
October 1873(III)

March 1882(I)
March 1887(II)
July 1890(III)
January 1893(I)
December 1895(IV)

June 1899(III)
September 1902(IV)
May 1907(II)
January 1910(I)
January 1913(I)

August 1918(III)
January 1920(I)
May 1923(II)
October 1926(III)
August 1929(III)

May 1937(II)
February 1945(I)
November 1948(IV)
July 1953(II)
August 1957(III)

December 1854 (IV)
December 1858 (IV)
June 1861 (III)
December 1867 (I)
December 1870 (IV)
March 1879 (I)

May 1885 (II)
April 1888 (I)
May 1891 (II)
June 1894 (II)
June 1897 (II)

December 1900 (IV)
August 1904 (III)
June 1908 (II)
January 1912 (IV)
December 1914 (IV)

March 1919 (I)
July 1921 (III)
July 1924 (III)
November 1927 (IV)
March 1933 (I)

June 1938 (II)
October 1945 (IV)
October 1949 (IV)
May 1954 (II)
April 1958 (II)

--
18
8
32
18
65

38
13
10
17
18

18
23
13
24
23

7
18
14
13
43

13
8
11
10
8

--
30
22
46
18
34

36
22
27
20
18

24
21
33
19
12

44
10
22
27
21

50
80
37
45
39

--
48
30
78
36
99

74
35
37
37
36

42
44
46
43
35

51
28
36
40
64

63
88
48
55
47

--
--
40
54
50
52

101
60
40
30
35

42
39
56
32
36

67
17
40
41
34

93
93
45
56
49
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April 1960(II)
December 1969(IV)
November 1973(IV)
January 1980(I)
July 1981(III)

July 1990(III)
March 2001(I)
December 2007 (IV)

February 1961 (I)
November 1970 (IV)
March 1975 (I)
July 1980 (III)
November 1982 (IV)

March 1991(I)
November 2001 (IV)
June 2009 (II)

10
11
16
6
16

8
8
18

24
106
36
58
12

92
120
73

34
117
52
64
28

100
128
91

32
116
47
74
18

108
128
81

Average, all cycles:
1854-2009 (33 cycles)
1854-1919 (16 cycles)
1919-1945 (6 cycles)
1945-2009 (11 cycles)

 
16
22
18
11

 
42
27
35
59

 
56
48
53
73

 
55*

  49**
53
66

* 32 cycles
** 15 cycles

Source: NBER

file:///C:/Documents and Settings/ishapiro/Desktop/cyclesmain.html

2 of 2 9/20/2010 4:47 PM

7 / 150



I. Cyclicality
Conditional Probability of Being in a Recession (US)
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Notes : This shows the fraction of time the economy was in a recession within an x-quarter window
around time t + k, conditional on being in a recession at time t, where x is allowed to vary between 3
and 5 quarters.

8 / 150



I. Cyclicality
Conditional Probability of Being in a Recession

a) Canada (b) France
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I. Cyclicality
Conditional Probability of Being in a Recession

(a) Germany (b) U.K

10 20 30 40 50 60 70 80 90

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40 50 60 70 80 90

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 / 150



I. Cyclicality
Cyclicality

I What is meant by cyclicality ?

× If activity is high today,
× at say N/2 period in the future, economic activity is expected to be low (below

trend),
× and then at N expected to be high again and so on.

I This translates in cyclicality in the auto-covariance

I Note : nothing deterministic about this definition, its only about conditional
expectations.

I Different from the more standard ”auto-regressive” (AR(1)) view.

× If activity is high today,
× we expect it to return to mean.

I The two views differ on whether or not we should worry about big booms.
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I. Cyclicality
Absence of Cyclicality
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I. Cyclicality
Cyclicality

0 10 20 30 40 50 60

Periods

-1

-0.5

0

0.5

1

13 / 150



I. Cyclicality
“Strong” Cyclicality
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I. Cyclicality
Cyclicality

I Issue seems easy to settle : just look at auto-covariance function of the data

I Difficulty : Many macro variables are trending, so this requires a trend-cycle
decomposition

I But such decompositions can create spurious cycles

I Solution : Look at hours worked per capita (non trending)
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I. Cyclicality
Non-Farm Business (NFB) Hours Per Capita
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I. Cyclicality
Autocorrelation of Hours

(a) Levels (b) High-Pass Filter (100)
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I. Cyclicality
Looking for Peaks in Spectral Density

I A different (better) way to look at cyclicality is to look at spectral density

I There is a one to one mapping between autocovariance and spectral density

I but spectral density “weights” autocorrelations with their contribution to total
variance

I  autotocorrelations at longer horizons are “boosted” and separated from shorter
horizons.
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I. Cyclicality
Decomposing a time series into frequency domain

I Idea : A series can be seen as the sum of periodic functions.
I A typical periodic function is cos(ωt), with period (the time it takes to reproduce

itself) 2π/ω.

× Knowing that period of cos(t) is 2π, for a given t1, what is the t2 such that
cos(ωt2) = cos(ωt1) ?

× The solution is t2 − t1 = 2π/ω.

I ω
2π is the frequency of oscillation (number of cycles per unit of time)
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I. Cyclicality
Typical periodic functions

Figure 1 – Cosine wave with ω=1
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I With ω = 1, the period is
2π = 6.28 and frequency
is 1

2π = 0.16.
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I. Cyclicality
Decomposing a time series into frequency domain

Figure 2 – Cosine waves with ω=1 or 1/2
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I With ω = 1/2, the period
is 4π = 12.56 and
frequency is 1

4π = 0.08.
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I. Cyclicality
Decomposing a time series into frequency domain

Figure 3 – Cosine waves with ω=1 and different amplitudes

0 2 4 6 8 10 12 14
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

c
o

s

I Here are plotted A cos(t)
with A = 1 or A = 2.
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I. Cyclicality
Decomposing a time series into frequency domain

Figure 4 – Cosine and Sine waves with ω=1
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I sin(ωt) behaves the same
way, with same amplitude
and period, but with a
phase shift
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I. Cyclicality
Decomposing a time series into frequency domain

I The idea of spectral decomposition is that with sin and cos, we can span the
whole space of covariance stationary time series : the typical periodic function is

a cos(ωt) + b sin(ωt) (1)

whose period is 2π/ω but whose phase and amplitude depend on (a, b)

I Here we want to treat a and b as mean zero random variables.

I There is always a sum of type (1) periodic functions that reproduces a given time
series

I The spectral density or spectrum of a series indicates the weight of each frequency
(from low to high) in the total variance of the series.
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I. Cyclicality
Decomposing a time series into frequency domain

I A (second order) stationary time series xt with E [xt ] = 0 has three fundamental
representations :

I 1. Autocovariance function
λτ = E [xtxt−τ ]

I 2. MA representation (Wold theorem) :

xt =
∞∑
j=0

θjεt−j and λτ =

( ∞∑
j=0

θjθj+τ

)
σ2ε

I 3. Spectral representation :

s(ω) =
1

2π

+∞∑
τ=−∞

λτ (cos(ωτ) + i sin(ωτ))

I Note : works only for stationary series
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I. Cyclicality
xt = εt

Figure 5 – (a) IRF and (b) Spectrum
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I. Cyclicality
xt = .95xt−1 + εt

Figure 6 – (a) IRF and (b) Spectrum
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I. Cyclicality
xt = .5xt−1 + .45xt−2 + εt

Figure 7 – (a) IRF and (b) Spectrum
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I. Cyclicality
xt = 1.92xt−1 − .95xt−2 + εt

Figure 8 – (a) IRF and (b) Spectrum
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I. Cyclicality
Conventional Wisdom-Granger [1969]

Econometrica, Vol. 34, No. 1 (January, 1966) 

THE TYPICAL SPECTRAL SHAPE OF AN ECONOMIC VARIABLE' 

BY C. W. J. GRANGER 

In recent years, a number of power spectra have been estimated from economic 
data and the majority have been found to be of a similar shape. A number of implica- 
tions of this shape are discussed, particular attention being paid to the reality of 
business cycles, stability and control problems, and model building. 

1. INTRODUCTION 

DURING THE past four or five years a fairly large number of power spectra have 
been estimated using economic data.2 It might thus be an appropriate time to 
review the results obtained and to ask if the advent of spectral methods has thrown 
any light on the basic characteristics of economic variables. The almost unanimous 
result of these investigations is that the vast majority of economic variables, after 
removal of any trend in mean and seasonal components, have similarly shaped 
power spectra, the typical shape being as in Figure 1. 

CL 

FIGURE 1.-Typical spectral shape. 

It is the purpose of this paper to illustrate this result and to discuss briefly its 
implications both for economic theory in general and for economic model building 
in particular. 

It is not, of course, suggested that every economic time series produce such 
spectra nor that nothing else is discernable from the estimated spectra other than 
this simple shape. Nevertheless, the fact that such a shape arises in the majority of 
cases does suggest that there are certain general, overall implications for economics, 
and, possibly, that the estimation of power spectra alone is unlikely to be a 
productive technique. Cross spectral methods which, in the author's opinion, are 
likely to prove more important and which attempt to discover and explain the re- 
lationships between economic variables, will not be considered in this paper.3 

1 Prepared under the auspices of National Science Foundation Grant GP-82. 
2 In addition to his own work, the author is familiar with the calculations by J. Cunnyngham, 

D. Fand, M. Godfrey, M. Hatanaka, M. Nerlove, E. Parzen, and M. Suzuki. 
3 For a description of cross-spectral methods and other generalizations see [3]. 
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I. Cyclicality
Non-Farm Business (NFB) Hours Per Capita
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I. Cyclicality
Non Farm Business Hours per Capita Spectrum
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I. Cyclicality
Hours Spectrum in Smets & Wouters’ Model
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I. Cyclicality
Hours Spectrum in Various Models
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I. Cyclicality
Capacity Utilization Spectrum
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I. Cyclicality
Investment-Output ratio
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I. Cyclicality

I The cycle is also a financial cycle

I (looking again at non-trending variables)

38 / 150



I. Cyclicality
Chicago Fed National Financial Conditions Index
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I. Cyclicality
Delinquency Rate
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I. Cyclicality
Spread (BBA bonds-FFR)
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I. Cyclicality
Wrapping up

I Traditional view of business cycles is a-cyclical :

× Spectral densities are thought monotonous
× This is what most models endogenously produce
× Exogenous forces do not look cyclical

I Data seems to tell us that there are indeed cycles

× because we have more observations
× because we look at non-trending variables (no need for stationarization)
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Roadmap

I. Cyclicality

II. Instability

III. Generating Cycles through Dynamic Models with Interactions

IV. A Fully Specified Model
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II. Instability
Introductory example

I Let Xt be a cyclical measure of activity, example : hours worked or unemployment
rate.

I Consider estimating an AR process (assuming zero mean).

Xt = A(L)Xt−1 + εt

× If roots of I − A(L) are sufficiently outside of unit circle, we tend to take as evidence
of stability.

× If very close to 1, we worry about a unit root.

I We often tend to disregard the possibility of roots inside the unit disc,

× as this would imply explosive behavior ;
× because it is not found in the data
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II. Instability
Introductory example

I But suppose instead the DGP process is of form

Xt = A(L)Xt−1 + γF (Xt−1) + εt F (0) = F ′(0) = 0

I where F (·) is a non-linear function and γ may be very small.

I The stability of the zero steady state will still depend only on roots of I − A(L).

I Hence, linear approx unchanged and dropping γF (Xt−1) in estimation may seem
reasonable.

I However, this could lead to substantial bias in estimation of roots of A(L) if
system is locally unstable.

I Consider AR(3) example with small cube term (F (x) = x3).
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II. Instability
Introductory example

I Assume the following DGP

xt = αxt−1 − 0.6xt−2 − 0.3xt−3 − 0.01x3t−1 + .25εt , (2)

I α takes values in [0.5, 1.5]

I  |λ|max ∈ [0.94, 1.4].

I Let’s look at the case in which |λ|max = 1.026.
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II. Instability
Introductory example

Figure 9 – Theoretical Impulse Response when ν is set to 0
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|λ|max = 1.026, xt = αxt−1 + βxt−2 + γxt−3 + νx3t−1 + εt
47 / 150



II. Instability
Introductory example

Figure 10 – Theoretical Impulse Response when ν is set to 0
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II. Instability
Introductory example

Figure 11 – Theoretical Impulse Response in the Nonlinear Model (ν negative)

0 10 20 30 40 50

-8

-6

-4

-2

0

2

4

6

8

|λ|max = 1.026, xt = αxt−1 + βxt−2 + γxt−3 + νx3t−1 + εt 49 / 150



II. Instability
Introductory example

Figure 12 – Theoretical Impulse Response in the Nonlinear Model
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II. Instability
Introductory example

Figure 13 – The Limit Cycle in the Nonlinear Model
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II. Instability
Introductory example

xt = αxt−1 − 0.6xt−2 − 0.3xt−3 − 0.01x3t−1 + .25εt , (3)

I Take many α in [0.5, 1.5]

I  |λ|max ∈ [0.94, 1.4].

I Simulated the DGP (3) for each α and estimate the two specifications :

xt = αxt−1 + βxt−2 + γxt−3 +νx3t−1 +εt

xt = αxt−1 + βxt−2 + γxt−3 +εt

I Compare estimated |λ|max for well- and mis-specified models with the true |λ|max.

52 / 150



II. Instability
Introductory example

Figure 14 – |λ|max for the Linear and Nonlinear estimation when the DGP is Nonlinear
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II. Instability
Introductory example

Figure 15 – R2 for the Linear and Nonlinear estimation when true |λ|max = 1.02 (1000
simulations, 300 observations per simulation)
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II. Instability
Introductory example

Figure 16 – Estimated Nonlinear and Linear Model Impulse Response
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II. Instability
Introductory example

Figure 17 – Estimated Nonlinear and Linear Model Impulse Response
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II. Instability
Strategy

I This suggests a specific way of looking at the data

I h : Total Hours Worked per Capita, U.S.A., 1960-2015

I High-Pass Filtered, 80 quarters

I “Minimal” model
ht = α0 + α1ht−1 + α2ht−2 + α3Ht−1 + α4h

3
t−1 + εt

Ht =
∑N

j=0(1− δ)jht−j
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II. Instability
Estimated Reduced Form

ht = −0.00 + 1.42 ht−1 − 0.48 ht−2,
ht = −0.01 + 1.31 ht−1 − 0.34 ht−2 − 0.25 Ht−1,
ht = −0.02 + 1.39 ht−1 − 0.34 ht−2 − 0.27 Ht−1 − 0.01 h3t−1.

I Non-linear term is significant
I Non-linear term enters with a minus
I

AR(2) Linear Minimal

R2 0.94 0.94 0.94
Max eig. 0.86 0.96 1.01

I R2 is not much improved
I But max eigenvalue (in modulus) crosses 1 with the nonlinear term
I SS is unique, unstable
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II. Instability
Estimated Reduced Form - Total Hours

Figure 18 – The Limit Cycle - Simulation as of T0 = 1961
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II. Instability
Estimated Reduced Form - Total Hours

Figure 19 – The Limit Cycle - Simulation as of T0 = 1961
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II. Instability
Estimated Reduced Form - Total Hours

Figure 20 – The Limit Cycle
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II. Instability
Estimated Reduced Form - Total Hours

Figure 21 – Forecasted Path as of 1961Q3 with the Minimal Model, Total Hours
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II. Instability
Estimated Reduced Form - Total Hours

Figure 22 – Forecasted Path as of 1961Q3, Total Hours
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II. Instability
Estimated Reduced Form - Total Hours

Figure 23 – Nonlinearities in the Minimal Model, Total Hours
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Roadmap

I. Cyclicality

II. Instability

III. Generating Cycles through Dynamic Models with Interactions

IV. A Fully Specified Model
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III. Generating Cycles through Dynamic Models with Interactions

I Which theoretical structure can produce cycles and instability ?

I Individual behaviours are not cyclical

I Robinson Crusoe is unlikely to see booms and busts other than those caused by
nature on his island

I But if we put one million of Crusoes with same preferences and technology
together, booms and busts more likely

I Cycles as an emergent phenomenon
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III. Generating Cycles through Dynamic Models with Interactions
A Reduced form setup that does not produce cycles

I Activity Yt depends positively on balance sheet conditions of HH or firms

I Balance sheet conditions Xt depend positively on activity

Yt = α1Yt−1 + α2Xt + εt

Xt = α3Xt−1 + α4Yt + µt

I All parameters are positive.

Proposition 1

The class of endogenous mechanism cannot create a hump shaped spectral density.

I Question : What forces are ”necessary”, assuming individual level behavior is not
itself cyclical ?
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III. Generating Cycles through Dynamic Models with Interactions
Environment (Might be thought as an Agent Based Model)

I N players

I Each agent accumulates Xi by playing ei
I Decision rule and law of motion for X are

Xit+1 = (1− δ)Xit + eit (4)

eit = α0 − α1Xit + α2eit−1 + F (et) (5)

with et =
∑

ejt
N

I δ < 1, 0 < α2 < 1.

I α1Xit : Optimal size argument (if α1 > 0)

I α2eit−1 : Adjustment cost argument
I F (et) : Strategic Interactions (a price, a quantity constraint)

× F ′ > 0 : strategic complementarities
× F ′ < 0 : strategic substitutabilities
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III. Generating Cycles through Dynamic Models with Interactions
Environment

Xit+1 = (1− δ)Xit + eit

eit = α0 − α1Xit + α2eit−1 + F (et)

I Define (X s , es) as the steady state of the linear model where F (·) = 0

I Normalize F (es) = 0

69 / 150



III. Generating Cycles through Dynamic Models with Interactions
“Best response” rule for a given history - Strategic substitutability

∑
ejt

N

eit eit=
∑

ejt
N

α0−α1Xit +
α2eit−1

eit = α0 − α1Xit + α2eit−1 + F

(∑
ejt
N

)
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III. Generating Cycles through Dynamic Models with Interactions
“Best response” rule for a given history - Multiple Equilibria

∑
ejt

N

eit eit=
∑

ejt
N

α0−α1Xit +
α2eit−1

eit = α0 − α1Xit + α2eit−1 + F

(∑
ejt
N

)
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III. Generating Cycles through Dynamic Models with Interactions
“Best response” rule for a given history - Strategic complementarity

I We restrict to the case where F ′(·) < 1, so that there are never multiple equlibria
within period t

∑
ejt

N

eit eit=
∑

ejt
N

α0−α1Xit +
α2eit−1
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2. Abstract Framework
A Proposition

eit = α0 − α1Xit + α2eit−1 + F (et)

Xit+1 = (1− δ)Xit + eit

I Aggregate outcome satisfies (locally)

et = α0 − α1Xt + α2et−1 + F ′(es) et

Xt+1 = (1− δ)Xt + et

Proposition 2

Necessary condition for this system to produced hump shaped spectral density :
complementarities (F ′ > 0) and dampening effect of stock (α1 > 0)
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2. Abstract Framework
Challenges

et = α0 − α1Xt + α2et−1 + F ′(es) et

Xt+1 = (1− δ)Xt + et

I Even if F ′(es) < 1, this system will become unstable if complementarity
sufficiently strong. (although non indeterminacy)

I Moreover, the loss of stability will generally happen when roots are complex.
I So this is a system where one should be aware that the presence of non-linearities

– for example in the interaction function F (et) – may cause sustained cycles :
limit cycles.

I One should not rule out the (local) instability of the SS in the estimation.
I The potential presence of (stochastic) limit cycles causes new challenges for

estimation as the steady state become unstable.
I With forward looking elements, this give rise to notion of saddle path stable limit

cycles
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case

I Assume α2 = 0 in

eit = α0 − α1Xit + α2eit−1 + F

(∑
ejt
N

)
I Then the model is

Xit+1 = (1− δ)Xit + eit

eit = α0 − α1Xit + F (et)

I It boils down to one order one dynamic equation in Xit

Xit+1 = α0 + (1− δ + α1)Xit + F (Xt+1 − (1− δ)Xt)

I So that, for symmetrical allocations

Xt+1 = α0 + (1− δ + α1)Xt + F (Xt+1 − (1− δ)Xt)
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case

I Assume no strategic interactions : F (·) ≡ 0

Xt+1 = α0 + (1− δ − α1)Xt

I Note that (1− δ − α1) can be either > 0 or < 0.

Proposition 3

The Economy is globally stable as |1− δ − α1| < 1
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case (α1 < 0, no cycles)
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case (α1 > 0, cycles)
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case

I Reintroduce strategic interactions

Xt+1 = α0 + (1− δ + α1)Xt + F (Xt+1 − (1− δ)Xt)

I Linearize around the steady state X s

Xt+1 = (α0 + δX s) + (1− δ + α1)Xt + F ′(es)(Xt+1 − (1− δ)Xt)

I so that

Xt+1 =
α0 + δX s

1− F ′(es)
+

((1− δ)(1− F ′(es)) + α1)

1− F ′(es)
Xt
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case

Xt+1 =
α0 + δX s

1− F ′(es)
+

((1− δ)(1− F ′(es)) + α1)

1− F ′(es)
Xt

Proposition 4

With strategic substitutability (F ′(·) < 0), the economy is always stable

Proposition 5

With strategic complementarity (F ′(·) > 0), there is always a level of complementarity
smaller than 1 such that the SS is (locally) unstable.
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case (α1 < 0, no cycles)
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case (α1 > 0, cycles)
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case : Adding Nonlinearities

I The SS X s becomes locally unstable

I “Real data” do not look explosive

I Let’s assume that strategic
complementarities dies out when the
economy is far above of below X s

I F is “S-shaped”

∑
ejt

N

eit eit=
∑

ejt
N

α0 − α1Xit
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case : Adding Nonlinearities

I Assume for simplicity that F is symmetric wrt X s

Xt+1 =
α0 + δX s

1− F ′(es)
+

((1− δ)(1− F ′(es)) + α1)

1− F ′(es)
Xt

I The dynamics of the economy will very much depend on whether
((1−δ)(1−F ′(es))+α1)

1−F ′(es) is positive or negative

× Positive : Hysteresis
× Negative : Limit cycle

I Need to think of environments that makes this slope is positive or negative
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case : Adding Nonlinearities
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case : Adding Nonlinearities
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case : Adding Nonlinearities
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case : Adding Nonlinearities
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III. Generating Cycles through Dynamic Models with Interactions
One-Dimension Case

I Problem with one dimension model : the dynamics does not look like a business
cycle

I Xt is not positively correlated.

I This needs not to be true in the more general model where α2 > 0
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case

Xit+1 = (1− δ)Xit + eit

eit = α0 − α1Xit + α2eit−1 + F (et)

I Local dynamics is(
et
Xt

)
=

(
α2−α1

1−F ′(es) −
α1(1−δ)
1−F ′(es)

1 1− δ

)
︸ ︷︷ ︸

M

(
et−1
Xt−1

)

+

( (
1− α2−α1

1−F ′(es)

)
es −

(
α1(1−δ)
1−F ′(es)

)
X s

0

)
I When F ′(es) varies from −∞ to 1, eigenvalues of M vary
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case

Proposition 6

As F ′(es) varies from 0 to −∞, the eigenvalues of M always stay within the unit circle
and therefore the system remains locally stable.
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case

Proposition 7

As F ′(es) varies from 0 towards 1, the dynamic system will become locally unstable.

(bifurcation)
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III. Generating Cycles through Dynamic Models with Interactions
Bifurcations

I 3 types of bifurcation

× Fold bifurcation : appearance of an eigenvalue equal to 1,
× Flip bifurcation : appearance of an eigenvalue equal to -1
× Hopf bifurcation : appearance of two complex conjugate eigenvalues of modulus 1
 hump is spectral density
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III. Generating Cycles through Dynamic Models with Interactions
Bifurcations

I We are interested in Hopf bifurcation because the limit cycle will be “persistent”

Proposition 8

As F ′(es) varies from 0 towards 1, the dynamic system will become unstable and we’ll
have smooth cycles (Hopf) if α1 > 0 and α2 is large enough.

eit = α0 − α1Xit + α2eit−1 + F (et)
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case

I Discrete time version of the Hopf theorem.

I Nice theorem : we simply have to look at the linearized dynamics to prove
existence of a limit cycle

I The parameter that varies is here the degree of strategic complementarities at the
steady state F ′(es)

I It is quite intuitive why a limit cycle occurs when the steady state moves from
stable to unstable
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case

I Here we can have a limit cycle with persistence

I Consider the steady state (X s , es)

I Strategic complementarities : centrifugal force that pushes away from the steady
state when close to.

I Accumulated variable X : centripetal force that pushes towards the steady state
when away from.

I The steady state locally unstable, but forces push the economy back to the steady
state when it is further from it.

I It is quite intuitive why a limit cycle occurs when the steady state moves from
stable to unstable

I In the case of the Hopf bifurcation, the limit cycle can be attractive (the
bifurcation is supercritical) or repulsive (the bifurcation is subcritical)
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III. Generating Cycles through Dynamic Models with Interactions

Figure 24 – Stable Steady State
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III. Generating Cycles through Dynamic Models with Interactions

Figure 25 – Hopf Supercritical bifurcation : Attractive Limit Cycle
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III. Generating Cycles through Dynamic Models with Interactions

Figure 26 – Unstable Steady State
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III. Generating Cycles through Dynamic Models with Interactions

Figure 27 – Hopf Subcritical bifurcation : Repulsive Limit Cycle
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Global stability
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Global stability
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Global instability

X s

es

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Xt

et

103 / 150



III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Global instability

X s
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Stable limit cycle
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Stable limit cycle
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Stable limit cycle
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III. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Stable limit cycle
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III. Generating Cycles through Dynamic Models with Interactions
Stability of the limit cycle

Proposition 9

If F ′′′(es) is sufficiency negative, then the Hopf bifurcation will be supercritical.
Therefore, the limit cycle is attractive.

I
I F ′′′ < 0 corresponds to an S − shaped reaction function

I

∑
ejt

N

eit eit=
∑

ejt
N

αt

eit = αt + F
(∑

ejt
N

)

αt = α0 − α1Xit + α2eit−1
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

I Xit+1 = (1− δ)Xit + eit

I eit = α0 − α1Xit + α2eit−1 + F
(∑

esit
N , ut

)
I F (et , ut) = F̃ (et) + ut .

I ut = ρut−1 + εt

I F̃ : S-shaped and piecewise linear
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 28 – Best response rules in the numerical example
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

I Steady state is eSS = 1, XSS = 10

I Deterministic simulation : let X0 = 8, e0 = 1
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 29 – Deterministic simulation

e and X , linear model e and X , nonlinear model

X

7 8 9 10 11 12 13

I

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(t = 0)

X

7 8 9 10 11 12 13

I

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(t = 0)

113 / 150



III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 30 – Deterministic simulation
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 31 – One stochastic simulation
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 32 – et = sin(ωt)
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 33 – What the results are not : et = sin(ωt) + ut
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 34 – What the results are :
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III. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

Figure 35 – What the results are :
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements

I Cycles were not a consequence of equilibrium selection with rational expectations
(not like sunspots)

I But robust to rational expectations.

I

eit = α0 − α1Xit + α2eit−1 + α3Et [eit+1] + F

(∑
ejt
N

)
I with accumulation remaining the same

Xit = (1− δ)Xit + eit

I Restrict attention to situations where this system is saddle path stable absent of
complementarities.

I The local dynamics is described by the 3 eigenvalues of the linearized system
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III. Generating Cycles through Dynamic Models with Interactions
Set of potential bifurcation with Forward looking elements

I Initial situation has two stable roots and one unstable

I Three types of bifurcations are possible :

1. The unstable root enters the unit circle : local indeterminacy arises
(“Benhabib-Farmer ”)

2. One stable root leaves the unit circle : instability arises with a flip or fold type
bifurcation

3. Two stable roots leave the unit circle simultaneous because they are complex : this is
a Hopf bifurcation
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III. Generating Cycles through Dynamic Models with Interactions
Set of potential bifurcation with Forward looking elements

Figure 36 – Eigenvalues of the Reduced Form Model
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III. Generating Cycles through Dynamic Models with Interactions
Set of potential bifurcation with Forward looking elements

I Initial situation has two stable roots and one unstable

I Three types of bifurcations are possible :

1. The unstable root enters the unit circle : local indeterminacy arises
(“Benhabib-Farmer ”)

2. One stable root leaves the unit circle : instability arises with a flip or fold type
bifurcation

3. Two stable roots leave the unit circle simultaneous because they are complex : this is
a Hopf bifurcation
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III. Generating Cycles through Dynamic Models with Interactions
Set of potential bifurcation with Forward looking elements

Figure 37 – Eigenvalues of the Reduced Form Model
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III. Generating Cycles through Dynamic Models with Interactions
Set of potential bifurcation with Forward looking elements

I Initial situation has two stable roots and one unstable

I Three types of bifurcations are possible :

1. The unstable root enters the unit circle : local indeterminacy arises
(“Benhabib-Farmer ”)

2. One stable root leaves the unit circle : instability arises with a flip or fold type
bifurcation

3. Two stable roots leave the unit circle simultaneous because they are complex : this is
a Hopf bifurcation
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III. Generating Cycles through Dynamic Models with Interactions
Set of potential bifurcation with Forward looking elements

Figure 38 – Eigenvalues of the Reduced Form Model
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements : when one increases ρ

Proposition 10

If unique steady state, then no indeterminacy nor Fold bifurcations (always one
positive and greater than one eigenvalue)
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements : when one increases ρ

Proposition 11

If α1 > 0 and α2 (sluggishness) sufficiently large, then the two other eigenvalues will
become complex and

I either will stay inside the unit disk (non locally explosive cycles)

I or will exit the unit disk ( Hopf bifurcation and limit cycles)
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements : when one increases ρ

Figure 39 – Increasing complementarities ρ : local stability
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements : when one increases ρ

Figure 40 – Increasing complementarities ρ : local instability and limit cycle
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements

Figure 41 – A Saddle Limit Cycle

Figure 1: A Saddle Limit Cycle

(a) (b)

(c)

Notes: The dark gray surface in each panel is the NEM. In panel (a), the black solid and dotted lines are
two paths that converge to a limit cycle (which is located on the NEM), one from the inside and one from the
outside. In panel (b), which shows the same phase space (from a slightly di↵erent angle), the dashed black
lines are two paths for which the jump variable has not placed the system onto the NEM, and which therefore
violate the TVC. In panel (c), the light gray plane is tangent to the NEM at zero.
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements

Figure 42 – Explosive path

Figure 1: A Saddle Limit Cycle

(a) (b)

(c)

Notes: The dark gray surface in each panel is the NEM. In panel (a), the black solid and dotted lines are
two paths that converge to a limit cycle (which is located on the NEM), one from the inside and one from the
outside. In panel (b), which shows the same phase space (from a slightly di↵erent angle), the dashed black
lines are two paths for which the jump variable has not placed the system onto the NEM, and which therefore
violate the TVC. In panel (c), the light gray plane is tangent to the NEM at zero.
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III. Generating Cycles through Dynamic Models with Interactions
Adding forward looking elements

Figure 43 – Linear and non linear stable manifolds

Figure 1: A Saddle Limit Cycle

(a) (b)

(c)

Notes: The dark gray surface in each panel is the NEM. In panel (a), the black solid and dotted lines are
two paths that converge to a limit cycle (which is located on the NEM), one from the inside and one from the
outside. In panel (b), which shows the same phase space (from a slightly di↵erent angle), the dashed black
lines are two paths for which the jump variable has not placed the system onto the NEM, and which therefore
violate the TVC. In panel (c), the light gray plane is tangent to the NEM at zero.
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II. Instability

III. Generating Cycles through Dynamic Models with Interactions

IV. A Fully Specified Model
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IV. A Fully Specified Model
A NK model

I Stylized NK model which is extended to allow for the forces highlighted in our
general structure.

I We add accumulation of durable-housing goods and habit persistence :
accumulation and sluggishness

I Financial frictions imply a counter-cyclical risk premium : complementarities

I Estimate parameters based on spectrum observations and higher moments. (use
perturbation method and indirect inference)
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IV. A Fully Specified Model
Basic Elements of the Model

1. Household buy consumption services to maximise utility taking prices as given

2. Firms supply consumption services to the market where the services can come
from existing durable goods or new production.

3. These firms have sticky prices.

4. Central Bank set policy rate according to a type of Taylor rule

5. Interest rate faced by households is the policy rate plus a risk premium, where the
risk premium varies with the cycle.

× unemployed workers may default
× To break even, banks charge a risk premium
× More aggregate consumption  more employment  less default  lower risk

premium  more individual consumption
× This creates complementarity : if the rest of the economy consumes more, the risk

premium falls  I tend to consume more.
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IV. A Fully Specified Model
Shocks and Observables

I Solution is
`t = µt + α̂1Xt + α̂2`t−1 + α̂3Et [`t+1] + F̂ (`t)

I together with accumulation

Xt+1 = (1− δ)Xt + ψ`t

I Shock

× AR(1) discount factor shock (µt)

I Observables

× `t is (log) employment (and also output gap),
× Risk Premium : Fed Funds Rate - BAA Bonds spread.
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IV. A Fully Specified Model
Estimation

I Estimate parameters of model by Indirect Inference
I Targets

× spectrum of hours worked on the frequencies 2-50
× spectrum of interest rate spread on the frequencies 2-50
× Set of other higher moments (correlation, kurtosis and skewness of hours and spread)
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IV. A Fully Specified Model
Spectrum fit for Hours
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IV. A Fully Specified Model
Hours Spectrum in Smets & Wouters’ Model
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IV. A Fully Specified Model
Spectrum fit for Spread
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IV. A Fully Specified Model
Sample Draw for Hours
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IV. A Fully Specified Model
Sample Draw for Hours, no shocks
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IV. A Fully Specified Model
Wrong interpretation of the effects of shocks
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IV. A Fully Specified Model
What do shocks do
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IV. A Fully Specified Model
Spectrum for Hours, no shocks
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IV. A Fully Specified Model
Shocks : µt = ρµt−1 + εt

Table 2 – Estimated Parameter Values

... ...

... ...
ρ -0.0000
... ...
... ...

I Shocks are important in our framework for explaining the data

I But they are i.i.d.

I Hence, almost all dynamics are internal.
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IV. A Fully Specified Model
Policy experiment

I Policy rule :
it = ρN + Etπt+1 + φ`Et`t+1

I Let’s increase φ`
I “Cyclical” policy has strong effect on the “structural” forces that shape the cycle.
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IV. A Fully Specified Model
Policy experiment - Hours Spectrum, Increasing φ`
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IV. A Fully Specified Model
Policy experiment -Hours Deterministic Simulation, Increasing φ`
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IV. A Fully Specified Model
Policy experiment - Hours, One Stochastic Simulation, Increasing φ`
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IV. A Fully Specified Model
Estimating to Match Spectral Density over (x ,50) (Hours)
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IV. A Fully Specified Model
Estimating to Match Spectral Density over (2,100) (Hours)
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IV. A Fully Specified Model
Hours Impulse Response at Cycle Peak

(a) Response at Peak (b) Response at Trough
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