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Notes

> Based on my work with PAUL BEAUDRY & DANA GALIZIA
> | will not take time for references, other work, etc

» Check on my webpage for papers and references
>

Write me : f.portier@ucl.ac.uk
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f.portier@ucl.ac.uk

Objective of the lecture

> Show that there is cyclicality (to be defined) in economic fluctuations. (data)

» Show that the economy might be thought as fluctuating around an unstable
steady state. (data)

» Discuss how such fluctuations can be seen as an emergent phenomenon in a
environment with interactions (theory)

» Show a fully micro-founded-general-equilibrium-rational-expectations model that
can be solved and estimated (theory and data)

» Under study : developed economies.
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Roadmap

|. Cyclicality

[I. Instability
IIl. Generating Cycles through Dynamic Models with Interactions (theory)
[\VV. A Fully Specified Model
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|. Cyclicality

v

Cycles are “recurrent movements in economic activity”
Booms and busts

Can be thought as the consequence of shocks hitting an otherwise stable
economy...

... Or as the very indication that that market (capitalist) economies are
intrinsically unstable.

Let's try to see what's in the data.

Start with the NBER series of 1 and 0 for expansions and recessions.
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|. Cyclicality

TABLE 1 — Recent U.S. Business Cycles, as identified by the NBER's Business Cycle Dating

Committee
BUSINESS CYCLE
REFERENCE DATES DURATION IN MONTHS
Peak Trough Contraction Expansion Cycle
Quarterly dates Peak Previous Trough Peak
are in parentheses to trough from from
Trough to Previous  Previous
this peak Trough Peak
April 1960(I1) February 1961 (1) 10 24 34 32
December 1969(IV)  November 1970 (IV) 11 106 117 116
November 1973(IV)  March 1975 (1) 16 36 52 47
January 1980(1) July 1980 (111) 6 58 64 74
July 1981(111) November 1982 (1V) 16 12 28 18
July 1990(111) March 1991(1) 8 92 100 108
March 2001(1) November 2001 (1V) 8 120 128 128
December 2007 (IV)  June 2009 (I1) 18 73 91 81
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|. Cyclicality
Conditional Probability of Being in a Recession (US)
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Notes : This shows the fraction of time the economy was in a recession within an x-quarter window
around time t + k, conditional on being in a recession at time t, where x is allowed to vary between 3
and 5 quarters.
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|. Cyclicality

Conditional Probability of Being in a Recession

a) Canada (b) France
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|. Cyclicality

Conditional Probability of Being in a Recession
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|. Cyclicality

Cyclicality

> What is meant by cyclicality ?
X If activity is high today,
X at say N/2 period in the future, economic activity is expected to be low (below
trend),
X and then at N expected to be high again and so on.

» This translates in cyclicality in the auto-covariance

> Note : nothing deterministic about this definition, its only about conditional
expectations.
» Different from the more standard " auto-regressive” (AR(1)) view.
X If activity is high today,
X we expect it to return to mean.

» The two views differ on whether or not we should worry about big booms.

11 /150



|. Cyclicality

Absence of Cyclicality
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|. Cyclicality

Cyclicality
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|. Cyclicality

“Strong” Cyclicality
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|. Cyclicality

Cyclicality

> Issue seems easy to settle : just look at auto-covariance function of the data

> Difficulty : Many macro variables are trending, so this requires a trend-cycle
decomposition

» But such decompositions can create spurious cycles

» Solution : Look at hours worked per capita (non trending)
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|. Cyclicality

Non-Farm Business (NFB) Hours Per Capita
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|. Cyclicality

Autocorrelation of Hours
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|. Cyclicality

Looking for Peaks in Spectral Density

> A different (better) way to look at cyclicality is to look at spectral density
> There is a one to one mapping between autocovariance and spectral density

> but spectral density “weights” autocorrelations with their contribution to total
variance

> ~- autotocorrelations at longer horizons are “boosted” and separated from shorter
horizons.
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|. Cyclicality

Decomposing a time series into frequency domain

> Idea : A series can be seen as the sum of periodic functions.

» A typical periodic function is cos(wt), with period (the time it takes to reproduce
itself) 27 /w.

% Knowing that period of cos(t) is 27, for a given t;, what is the t, such that
cos(wtp) = cos(wty) ?
X The solution is t, — t; = 27 /w.

» o is the frequency of oscillation (number of cycles per unit of time)
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|. Cyclicality

Typical periodic functions

FIGURE 1 — Cosine wave with w=1
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|. Cyclicality

Decomposing a time series into frequency domain

FIGURE 2 — Cosine waves with w=1 or 1/2
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|. Cyclicality

Decomposing a time series into frequency domain

FIGURE 3 — Cosine waves with w=1 and different amplitudes
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|. Cyclicality

Decomposing a time series into frequency domain

€0s,sin

FIGURE 4 — Cosine and Sine waves with w=1
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|. Cyclicality

Decomposing a time series into frequency domain

> The idea of spectral decomposition is that with sin and cos, we can span the
whole space of covariance stationary time series : the typical periodic function is

acos(wt) + bsin(wt) (1)

whose period is 27 /w but whose phase and amplitude depend on (a, b)
> Here we want to treat a and b as mean zero random variables.

» There is always a sum of type (1) periodic functions that reproduces a given time
series

» The spectral density or spectrum of a series indicates the weight of each frequency
(from low to high) in the total variance of the series.
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|. Cyclicality

Decomposing a time series into frequency domain

» A (second order) stationary time series x; with E[x;] = 0 has three fundamental
representations :

> 1. Autocovariance function
)\7— = E[thtfﬂ']

» 2. MA representation (WOLD theorem) :

Xt = Zejé‘t_j and )\7— = <Z@j9j+7> Ug
Jj=0 j=0

> 3. Spectral representation :

1 X
s(w) = o Z Ar(cos(wT) + isin(wT))

> Note : works only for stationary series
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|. Cyclicality

Xt = €&t

RE 5 — (a) IRF and (b) Spectrum
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|. Cyclicality
X = .95x:_1 + &

URE 6 — (a) IRF and (b) Spectrum
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|. Cyclicality

Xt = .DXe—1 + .45x¢—2 + &

URE 7 — (a) IRF and (b) Spectrum
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|. Cyclicality

xt = 1.92x;_1 — .95x:—» + €

FIGURE 8 — (a) IRF and (b) Spectrum
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|. Cyclicality

Conventional Wisdom-GRANGER [1969]
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Ficure 1.—Typical spectral shape.
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|. Cyclicality

Conventional Wisdom-GRANGER [1969]
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|. Cyclicality

Non-Farm Business (NFB) Hours Per Capita
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|. Cyclicality

Non Farm Business Hours per Capita Spectrum
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|. Cyclicality
Hours Spectrum in Smets & Wouters' Model
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|. Cyclicality
Hours Spectrum in Various Models
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|. Cyclicality

Capacity Utilization Spectrum

7
@
<
e
=
=
et
2]
-
T2
He &8t -———"—"""—————————— ——
= >
I I I I I I
=3 la) (=3 ') (= s = v (=)
< c [3a) [\l I\l — —

50 60

40

32

Periodicity

36150



|. Cyclicality

Investment-Output ratio
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|. Cyclicality

> The cycle is also a financial cycle

> (looking again at non-trending variables)
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|. Cyclicality

Chicago Fed National Financial Conditions Index
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|. Cyclicality

Delinquency Rate
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|. Cyclicality

Spread (BBA bonds-FFR)
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|. Cyclicality

Wrapping up

> Traditional view of business cycles is a-cyclical :

X Spectral densities are thought monotonous
X This is what most models endogenously produce
X Exogenous forces do not look cyclical

> Data seems to tell us that there are indeed cycles

X because we have more observations
X because we look at non-trending variables (no need for stationarization)
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Roadmap

|. Cyclicality

[I. Instability
[1l. Generating Cycles through Dynamic Models with Interactions
[\VV. A Fully Specified Model
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I1. Instability

Introductory example

> Let X; be a cyclical measure of activity, example : hours worked or unemployment
rate.

» Consider estimating an AR process (assuming zero mean).

Xt = A(L)thl + €

X If roots of | — A(L) are sufficiently outside of unit circle, we tend to take as evidence
of stability.
X If very close to 1, we worry about a unit root.

> We often tend to disregard the possibility of roots inside the unit disc,

X as this would imply explosive behavior;
X because it is not found in the data
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I1. Instability

Introductory example

| 2

v

But suppose instead the DGP process is of form
Xe = A(L)Xe—1 + vF(Xeo1) + € F(0)=F'(0)=0

where F(+) is a non-linear function and ~ may be very small.
The stability of the zero steady state will still depend only on roots of / — A(L).

Hence, linear approx unchanged and dropping vF(X;—1) in estimation may seem
reasonable.

However, this could lead to substantial bias in estimation of roots of A(L) if
system is locally unstable.

Consider AR(3) example with small cube term (F(x) = x3).
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I1. Instability

Introductory example

> Assume the following DGP
X¢ = axe_1 — 0.6x;2 — 0.3x,_3 — 0.01x>_; + .25¢;, (2)

> « takes values in [0.5,1.5]
» ~> |Almax € [0.94,1.4].
> Let's look at the case in which |A|max = 1.026.
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II. Instability

Introductory example . )
FI1GURE 9 — Theoretical Impulse Response when v is set to 0
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II. Instability

Introductory example ) )
F1GURE 10 — Theoretical Impulse Response when v is set to 0
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II. Instability

Introductory example
FIGURE 11 — Theoretical Impulse Response in the Nonlinear Model (v negative)
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II. Instability

Introductory example
FIGURE 12 — Theoretical Impulse Response in the Nonlinear Model
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II. Instability

Introductory example o ) )
FIGURE 13 — The Limit Cycle in the Nonlinear Model
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I1. Instability

Introductory example

X = QX1 — O.6Xt72 — 0'3Xt73 — 001X§_1 + .256t, (3)

» Take many « in [0.5,1.5]
>~ |Amax € [0.94,1.4].
» Simulated the DGP (3) for each « and estimate the two specifications :

Xt = axe—1 + Bxe—2 + YXe—3 +UXp_y +er

Xe = aXe—1 + BXe—2 + VX3 +é€r

» Compare estimated |A|max for well- and mis-specified models with the true |A|max-
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II. Instability

Introductory example

FIGURE 14 — |A|max for the Linear and Nonlinear estimation when the DGP is Nonlinear
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Il. Instability

Introductory example

FIGURE 15 — R? for the Linear and Nonlinear estimation when true |A|max = 1.02 (1000

simulations, 300 observations per simulation)
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II. Instability

Introductory example ) ] )
F1GURE 16 — Estimated Nonlinear and Linear Model Impulse Response
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II. Instability

Introductory example ) ] )
F1GURE 17 — Estimated Nonlinear and Linear Model Impulse Response
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I1. Instability

Strategy

> This suggests a specific way of looking at the data

> h : Total Hours Worked per Capita, U.S.A., 1960-2015
> High-Pass Filtered, 80 quarters

> “Minimal” model

h: ao + arhe—1 + aohe_p + azHe_1 + auh? | +e¢

He = ¥ o(1—6Yhe
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I1. Instability

Estimated Reduced Form

ht - 7000 + 142 htfl - 048 ht72,
hy = —-0.01+1.31 ht—1 —0.34 hy_o —0.25 H;_q,
hy = —0.02+1.39 hy_1 —0.34 hy_p — 0.27 H;—1 — 0.01 h>_;.

» Non-linear term is significant
Non-linear term enters with a minus

v

AR(2) Linear Minimal

R?2 0.94 0.94 0.94
Max eig.  0.86 0.96 1.01

» R?is not much improved
» But max eigenvalue (in modulus) crosses 1 with the nonlinear term
> SS is unique, unstable
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I1. Instability

Estimated Reduced Form - Total Hours

F1GURE 18 — The Limit Cycle - Simulation as of Ty = 1961
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I1. Instability

Estimated Reduced Form - Total Hours

F1GURE 19 — The Limit Cycle - Simulation as of Ty = 1961
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I1. Instability

Estimated Reduced Form - Total Hours

F1GURE 20 — The Limit Cycle
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Il. Instability

Estimated Reduced Form - Total Hours

FIGURE 21 — Forecasted Path as of 1961Q3 with the Minimal Model, Total Hours
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I1. Instability

Estimated Reduced Form - Total Hours

FIGURE 22 — Forecasted Path as

of 1961Q3, Total Hours
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II. Instability

Estimated Reduced Form - Total Hours

FIGURE 23 — Nonlinearities in the Minimal Model, Total Hours
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|. Cyclicality

[I. Instability
[1l. Generating Cycles through Dynamic Models with Interactions
[\VV. A Fully Specified Model
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IIl. Generating Cycles through Dynamic Models with Interactions

v

Which theoretical structure can produce cycles and instability ?
Individual behaviours are not cyclical

Robinson Crusoe is unlikely to see booms and busts other than those caused by
nature on his island

But if we put one million of Crusoes with same preferences and technology
together, booms and busts more likely

Cycles as an emergent phenomenon
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IIl. Generating Cycles through Dynamic Models with Interactions

A Reduced form setup that does not produce cycles

> Activity Y; depends positively on balance sheet conditions of HH or firms

> Balance sheet conditions X; depend positively on activity

Ye = a1Yio1+ooX:+ €
Xe = o3Xeo1+agYe+ pe

> All parameters are positive.
Proposition 1

The class of endogenous mechanism cannot create a hump shaped spectral density.

» Question : What forces are "necessary”, assuming individual level behavior is not
itself cyclical 7
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IIl. Generating Cycles through Dynamic Models with Interactions
Environment (Might be thought as an Agent Based Model)

>
>
>

vvyyy

N players
Each agent accumulates X; by playing e;
Decision rule and law of motion for X are

Xit41 = (1 —0)Xir + €ir

eit = ag — a1 Xjr + azejr—1 + F (er)

. e;

with e; = %

0<1,0<ay<l.

a1 Xj : Optimal size argument (if a; > 0)

azejr—1 : Adjustment cost argument

F (e:) : Strategic Interactions (a price, a quantity constraint)
x F' >0 : strategic complementarities
X F’ < 0 : strategic substitutabilities
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IIl. Generating Cycles through Dynamic Models with Interactions

Environment

Xitr1 = (1—=0)Xit + eir
er = oag— o Xy +aseir_1+ F (et)

> Define (X*, e®) as the steady state of the linear model where F(-) =0
» Normalize F(e®) =0
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IIl. Generating Cycles through Dynamic Models with Interactions

“Best response” rule for a given history - Strategic substitutability

. e
€it A €it— %

ap — oy Xie+ .
Q€jt—1

e
ejir = ap — 1 Xje + o€je—1 + F (%)
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IIl. Generating Cycles through Dynamic Models with Interactions

“Best response” rule for a given history - Multiple Equilibria

. e
€it A €it— %

ap — oy Xig+
Q261

M\f
=

e
ejir = ap — 1 Xje + o€je—1 + F (%)
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IIl. Generating Cycles through Dynamic Models with Interactions

“Best response” rule for a given history - Strategic complementarity

> We restrict to the case where F'(-) < 1, so that there are never multiple equlibria
within period t

Eit A €it— —Z

ag— o1 Xip +
Q2€jt—1

M\f
<
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2. Abstract Framework
A Proposition

e = oag— a1 Xy + aneir—1+ F (et)
Xitr1 = (1—0)Xit + e

> Aggregate outcome satisfies (locally)

er = ap — a1 Xt +aner_1 + F/(es) et
Xt+1 = (]_ — 5)Xt + et

Proposition 2

Necessary condition for this system to produced hump shaped spectral density :
complementarities (F' > 0) and dampening effect of stock (a1 > 0)
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2. Abstract Framework

Challenges

er = ap — a1 Xy +anep_1 + F/(es) €t
Xt+1 = (]_ — 5)Xt + et

Even if F'(e®) < 1, this system will become unstable if complementarity
sufficiently strong. (although non indeterminacy)

Moreover, the loss of stability will generally happen when roots are complex.

So this is a system where one should be aware that the presence of non-linearities
— for example in the interaction function F(e;) — may cause sustained cycles :
limit cycles.

One should not rule out the (local) instability of the SS in the estimation.

The potential presence of (stochastic) limit cycles causes new challenges for
estimation as the steady state become unstable.

With forward looking elements, this give rise to notion of saddle path stable limit
cycles
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case

> Assume ap = 0 in
e
eir = ag — o Xjt + anejp—1 + F <N1t)

» Then the model is

Xitx1 = (1 —0)Xit + e
eir = op— X+ F(er)

> It boils down to one order one dynamic equation in Xj;
X,'t+1 = @p + (1 — (5 + al)X,-t + F(Xt+1 — (1 — (5)Xt)
> So that, for symmetrical allocations

Xer1=ao+ (1 =0+ a1)Xe + F(Xep1 — (1 —6)Xe)
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case

» Assume no strategic interactions : F(:) =0
Xt+1 = o+ (]. - — Ofl)Xt
> Note that (1 —d — a1) can be either > 0 or < 0.

Proposition 3

The Economy is globally stable as |1 — 6 — as| < 1
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case (a1 < 0, no cycles)

A Xt-

+1

—o +(l‘5"(kxt

h e

7o X
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case (a1 > 0, cycles)

A Xt-

+1
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case

> Reintroduce strategic interactions
Xev1i=0a0+ (1 =0+ a1)Xe + F(Xer1 — (1= 0)Xt)
> Linearize around the steady state X°®
Xiy1 = (g +0X°) + (1 — 5+ a1)Xs + F'(€°)(Xer1 — (1 = 0)X¢)

> so that
Xoin — ag + 0X° N (1 =08)(1—F'(e°)) + 1) X
t+1 — 1— F/(es) 1— F/(es) t
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case

ag +0X* (1 =0)(1 = F'(e°)) +n)

X =
LTI F(e) 1— F/(e)

Xt
Proposition 4
With strategic substitutability (F'(-) < 0), the economy is always stable

Proposition 5

With strategic complementarity (F'(-) > 0), there is always a level of complementarity
smaller than 1 such that the SS is (locally) unstable.
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case (a1 < 0, no cycles)

N Xt‘

+1

S

:

Xy

- v(o(—f)(f‘— <|_S)(J-f‘fx’)—ﬁ)(
S CO R e ) €
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case (a1 > 0, cycles)

A Xt-

+1

\’(Eﬂ: M
(-7 1%
E ) (FB) ~ o
-7y ¢
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case : Adding Nonlinearities

» The SS X*° becomes locally unstable

“Real data” do not look explosive

v

> Let's assume that strategic
complementarities dies out when the
economy is far above of below X*

> Fis “S-shaped”

€it 4

ag — a1 Xt

M4
=
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case : Adding Nonlinearities

» Assume for simplicity that F is symmetric wrt X?°

ag+06X° (1 —-0)(1 = F'(e%)) + )

X
- F(e) - F(e) f

Xt+1 =

» The dynamics of the economy will very much depend on whether
((176)(17F;(es)))+a1)
1—F/(e®

X Positive : Hysteresis
X Negative : Limit cycle

is positive or negative

> Need to think of environments that makes this slope is positive or negative

84 /150



IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case : Adding Nonlinearities

A Xt-

+1

S

/o
S

_ v(o(—f)(f‘— <|_S)(J-f‘fx’)—ﬁ)(
e fre) €
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case : Adding Nonlinearities

A Xt-

+1 !

n A ’
« X Y% X
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case : Adding Nonlinearities

A Xt-

+1

\’(Eﬂ: M
(-7 1%
E ) (FB) ~ o
-7y ¢
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case : Adding Nonlinearities

X oA

£+
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IIl. Generating Cycles through Dynamic Models with Interactions

One-Dimension Case

» Problem with one dimension model : the dynamics does not look like a business
cycle

> X; is not positively correlated.

> This needs not to be true in the more general model where ap > 0
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case

Xit+1 = (1 — 5)Xit + €t
er = ag— a1X;t + azejr—1 + F(et)

ar—a 1-0
1_2,:/(615) _:[a_l(F/(es)) < €r—1 )
1 1-94 Xe—1

[

» Local dynamics is

(%)

M

+ ( (1= 2y & - (20e) X )

0

» When F’(e®) varies from —oo to 1, eigenvalues of M vary
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case

Proposition 6

As F'(e®) varies from 0 to —oo, the eigenvalues of M always stay within the unit circle
and therefore the system remains locally stable.
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case

Proposition 7

As F'(e®) varies from O towards 1, the dynamic system will become locally unstable.

(bifurcation)
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IIl. Generating Cycles through Dynamic Models with Interactions

Bifurcations

> 3 types of bifurcation
X Fold bifurcation : appearance of an eigenvalue equal to 1,
X Flip bifurcation : appearance of an eigenvalue equal to -1
X  HOPF bifurcation : appearance of two complex conjugate eigenvalues of modulus 1
~~ hump is spectral density
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IIl. Generating Cycles through Dynamic Models with Interactions

Bifurcations
> We are interested in HOPF bifurcation because the limit cycle will be “persistent”

Proposition 8

As F'(e®) varies from O towards 1, the dynamic system will become unstable and we'll
have smooth cycles (HoPF¥) if a1 > 0 and ay is large enough.

eir = ag — 041X,-t + aoejr—1 + F(ef)
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case

> Discrete time version of the HOPF theorem.

» Nice theorem : we simply have to look at the linearized dynamics to prove
existence of a limit cycle

> The parameter that varies is here the degree of strategic complementarities at the
steady state F'(e°)

> It is quite intuitive why a limit cycle occurs when the steady state moves from
stable to unstable
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case

> Here we can have a limit cycle with persistence
> Consider the steady state (X°, e°)

> Strategic complementarities : centrifugal force that pushes away from the steady
state when close to.

» Accumulated variable X : centripetal force that pushes towards the steady state
when away from.

> The steady state locally unstable, but forces push the economy back to the steady
state when it is further from it.

> It is quite intuitive why a limit cycle occurs when the steady state moves from
stable to unstable

» In the case of the HOPF bifurcation, the limit cycle can be attractive (the
bifurcation is supercritical) or repulsive (the bifurcation is subcritical)
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II1. Generating Cycles through Dynamic Models with Interactions

FIGURE 24 — Stable Steady State
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II1. Generating Cycles through Dynamic Models with Interactions

FI1GURE 25 — HOPF Supercritical bifurcation : Attractive Limit Cycle
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II1. Generating Cycles through Dynamic Models with Interactions

FIGURE 26 — Unstable Steady State
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II1. Generating Cycles through Dynamic Models with Interactions

FIGURE 27 — HOPF Subcritical bifurcation : Repulsive Limit Cycle
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Global stability
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IIl. Generating Cycles through Dynamic Models with Interactions
Two-Dimension Case - Global stability
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Global instability
€t x
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Global instability
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Stable limit cycle
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Stable limit cycle
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Stable limit cycle
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IIl. Generating Cycles through Dynamic Models with Interactions

Two-Dimension Case - Stable limit cycle
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IIl. Generating Cycles through Dynamic Models with Interactions

Stability of the limit cycle
Proposition 9

If F"'(e*) is sufficiency negative, then the HOPF bifurcation will be supercritical.
Therefore, the limit cycle is attractive.

| 2
» F"" < 0 corresponds to an S — shaped reaction function

e; e
€it 4 t="pN

er = ay+ F (zNeft)

S Zejt
N

ar = op — a1 Xjt + anejr—1 oo 15



IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

v

Xity1 = (1 = 6) Xt + eit
et = g — a1 Xjt + aner-1 + F (%, Ut)

> F(et, Ut) = F(et) =+ ug.
> ur=pur1ter

v

> F: S-shaped and piecewise linear
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IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

FIGURE 28 — Best response rules in the numerical example

linear model nonlinear model
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IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

> Steady state is ess = 1, Xs5 = 10
» Deterministic simulation : let X =8, ¢g =1
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IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

FIGURE 29 — Deterministic simulation

e and X, linear model e and X, nonlinear model
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IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

F1GURE 30 — Deterministic simulation

e, X, linear model e, X, nonlinear model
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IIl. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

FIGURE 31 — One stochastic simulation

Linear model Nonlinear model
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IIl. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model

FIGURE 32 — e; = sin(wt)
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IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

FIGURE 33 — What the results are not : e; = sin(wt) + u;

2
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IIl. Generating Cycles through Dynamic Models with Interactions
Quantitative Reduced Form Limit Cycle Model
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FIGURE 34 — What the results are :
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IIl. Generating Cycles through Dynamic Models with Interactions

Quantitative Reduced Form Limit Cycle Model

FI1GURE 35 — What the results are :

0 20 40 60 80 100 120
period
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IIl. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements

> Cycles were not a consequence of equilibrium selection with rational expectations
(not like sunspots)

> But robust to rational expectations.
>

e:
e = ag — 061Xit + asejr_1 + a3Et[eit+1] +F <ZIVJt>
> with accumulation remaining the same
Xie = (1= 6)Xie + eir

> Restrict attention to situations where this system is saddle path stable absent of
complementarities.

» The local dynamics is described by the 3 eigenvalues of the linearized system
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IIl. Generating Cycles through Dynamic Models with Interactions

Set of potential bifurcation with Forward looking elements

> Initial situation has two stable roots and one unstable
> Three types of bifurcations are possible :

1. The unstable root enters the unit circle : local indeterminacy arises
("BENHABIB-FARMER ")

121/150



IIl. Generating Cycles through Dynamic Models with Interactions

Set of potential bifurcation with Forward looking elements

FI1GURE 36 — Eigenvalues of the Reduced Form Model
o = 0.5, 0 =045, a3 =-0.1, 6 = 0.5
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IIl. Generating Cycles through Dynamic Models with Interactions

Set of potential bifurcation with Forward looking elements

> Initial situation has two stable roots and one unstable
> Three types of bifurcations are possible :

1. The unstable root enters the unit circle : local indeterminacy arises
("BENHABIB-FARMER ")

2. One stable root leaves the unit circle : instability arises with a flip or fold type
bifurcation
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IIl. Generating Cycles through Dynamic Models with Interactions

Set of potential bifurcation with Forward looking elements

FIGURE 37 — Eigenvalues of the Reduced Form Model

a; =-0.3, as = -0.2, az = -0.5, 6 = 0.05
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IIl. Generating Cycles through Dynamic Models with Interactions

Set of potential bifurcation with Forward looking elements

> Initial situation has two stable roots and one unstable
> Three types of bifurcations are possible :

1. The unstable root enters the unit circle : local indeterminacy arises
("BENHABIB-FARMER ")

2. One stable root leaves the unit circle : instability arises with a flip or fold type
bifurcation

3. Two stable roots leave the unit circle simultaneous because they are complex : this is
a Hopf bifurcation
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IIl. Generating Cycles through Dynamic Models with Interactions

Set of potential bifurcation with Forward looking elements

F1GURE 38 — Eigenvalues of the Reduced Form Model
o =03, as = 0.6, a3 =-0.3, 6 = 0.05
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IIl. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements : when one increases p

Proposition 10

If unique steady state, then no indeterminacy nor Fold bifurcations (always one
positive and greater than one eigenvalue)
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IIl. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements : when one increases p

Proposition 11

If a1 > 0 and ay (sluggishness) sufficiently large, then the two other eigenvalues will
become complex and

> either will stay inside the unit disk (non locally explosive cycles)

» or will exit the unit disk ( HOPF bifurcation and limit cycles)
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IIl. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements : when one increases p

FIGURE 39 — Increasing complementarities p : local stability
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IIl. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements : when one increases p

FIGURE 40 — Increasing complementarities p : local instability and limit cycle
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lI1. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements

FIGURE 41 — A Saddle Limit Cycle
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IIl. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements

FIGURE 42 — Explosive path
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lI1. Generating Cycles through Dynamic Models with Interactions

Adding forward looking elements

FIGURE 43 — Linear and non linear stable manifolds

128 /150



Roadmap

|. Cyclicality

[I. Instability
[I. Generating Cycles through Dynamic Models with Interactions
[\V/. A Fully Specified Model
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IV. A Fully Specified Model

A NK model

> Stylized NK model which is extended to allow for the forces highlighted in our
general structure.

» We add accumulation of durable-housing goods and habit persistence :
accumulation and sluggishness

> Financial frictions imply a counter-cyclical risk premium : complementarities

> Estimate parameters based on spectrum observations and higher moments. (use
perturbation method and indirect inference)
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IV. A Fully Specified Model

Basic Elements of the Model

1. Household buy consumption services to maximise utility taking prices as given

2. Firms supply consumption services to the market where the services can come
from existing durable goods or new production.
3. These firms have sticky prices.
4. Central Bank set policy rate according to a type of Taylor rule
5. Interest rate faced by households is the policy rate plus a risk premium, where the
risk premium varies with the cycle.
X unemployed workers may default
X To break even, banks charge a risk premium
X More aggregate consumption ~» more employment ~~ less default ~> lower risk
premium ~~ more individual consumption
X This creates complementarity : if the rest of the economy consumes more, the risk
premium falls ~» | tend to consume more.
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IV. A Fully Specified Model

Shocks and Observables

» Solution is N
lr = pe + 0 X + Q2le—1 + a3E¢ [Cera] + F(44)

P together with accumulation
Xt+1 - (]. - 6) Xt + wﬁt

» Shock
% AR(1) discount factor shock (f:)
» Observables

x Ly is (log) employment (and also output gap),
X Risk Premium : Fed Funds Rate - BAA Bonds spread.
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IV. A Fully Specified Model

Estimation

> Estimate parameters of model by Indirect Inference
> Targets

X spectrum of hours worked on the frequencies 2-50
X spectrum of interest rate spread on the frequencies 2-50
X Set of other higher moments (correlation, kurtosis and skewness of hours and spread)
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IV. A Fully Specified Model

Spectrum fit for Hours

Periodicity
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IV. A Fully Specified Model

Hours Spectrum in Smets & Wouters' Model
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IV. A Fully Specified Model

Spectrum fit for Spread

= Data
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IV. A Fully Specified Model

Sample Draw for Hours

Hours (%)
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IV. A Fully Specified Model

Sample Draw for Hours, no shocks
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IV. A Fully Specified Model

Wrong interpretation of the effects of shocks
2

1.5

1,
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IV. A Fully Specified Model

What do shocks do

20 40 60 80 100 120
period
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IV. A Fully Specified Model

Spectrum for Hours, no shocks
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IV. A Fully Specified Model

Shocks : pe = ppe—1 + €+

TABLE 2 — Estimated Parameter Values

p -0.0000

> Shocks are important in our framework for explaining the data
> But they are i.i.d.
P> Hence, almost all dynamics are internal.
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IV. A Fully Specified Model

Policy experiment

> Policy rule :
ir = pN + Eimeyr + doEeleyn

> Let's increase ¢y

> “Cyclical” policy has strong effect on the “structural” forces that shape the cycle.
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IV. A Fully Specified Model

Policy experiment - Hours Spectrum, Increasing ¢y
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IV. A Fully Specified Model

Policy experiment -Hours Deterministic Simulation, Increasing ¢,
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IV. A Fully Specified Model

Policy experiment - Hours, One Stochastic Simulation, Increasing ¢,
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IV. A Fully Specified Model

Estimating to Match Spectral Density over (x,50) (Hours)
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IV. A Fully Specified Model

Estimating to Match Spectral Density over (2,100) (Hours)

Periodicity
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IV. A Fully Specified Model

Hours Impulse Response at Cycle Peak

(a) Response at Peak (b) Response at Trough
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