Real Keynesian Models and Sticky Prices

Paul Beaudry Bank of Canada Chenyu (Sev) Hou University of British Columbia Franck Portier
University College London

June 6-7, 2019

3rd Workshop on "Macroeconomic and Financial Time Series Analysis" Lancaster University Introduction: Inflation

- A set of puzzles in the behaviour of inflation, when observed through the lens of a New Keynesian model
 - × missing inflation
 - × missing deflation
 - \times missing volatility of inflation at the ZLB
 - \times etc.
- One way out is to enrich the standard New Keynesian model
- ► We suggest an alternative perspective that questions the real side of the model that NK models build on

Introduction: Demand Shocks

- ▶ In many (most) macro models, "demand" shocks (optimism, positive sentiment, good news, possibly lax credit,...) are expansionary because prices are sticky.
- ► Smaller literature suggests that sticky prices may not be necessary for demand shocks to be expansionary. → Real Keynesian models
- ▶ If prices are sticky (after all), this might be a rather theological distinction.
- Questions addressed in this paper: should we care that a model is Real Keynesian
 - 1. for our understanding of how monetary shocks affect the economy?
 - 2. for our understanding of the conduct of monetary policy?
 - 3. for the explained behaviour of inflation?
- Answers are yes, yes and yes.

Introduction: Contributions

- Propose a new class of simple extensions of the New Keynesian model
- ► Real Keynesian models have very different implications for monetary policy when prices are sticky.
- ► Show that it is empirically relevant

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Focus on the Zero Lower Bound and Missing Deflation

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Focus on the Zero Lower Bound and Missing Deflation

- No technology shock, no capital, CRS: $y_t = c_t = \ell_t$
- Model with sticky prices:

$$\ell_t = E_t \ell_{t+1} - \alpha_r (i_t - E_t \pi_{t+1}) + d_t$$
 Euler Equation (EE)
 $\pi_t = \beta E_t \pi_{t+1} + \kappa \ mc_t$ Phillips Curve (PC)

- Marginal cost is assumed to depend on labor market tightness (real wage) \leadsto $mc_t = \gamma_\ell \ell_t$
- ► When prices are fully flexible:

$$\ell_t = E_t \ell_{t+1} - \alpha_r r_t + d_t$$
 Euler Equation (EE) $mc_t = 0 = \gamma_\ell \ell_t$ Aggregate Supply (AS)

Flex price NK model:

$$\ell_t = E_t \ell_{t+1} - \alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t \quad (AS)$$

i.i.d. case :

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_{\ell} \ell_t \tag{AS}$$

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t$ (AS)

i.i.d. case :

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t$ (AS)

- Let's have a more general model in which AS is not infinitely sloped.
- Assume now that marginal cost also depend on the real interest rate *r* (*cost channel*)

$$mc_t = \gamma_\ell \ell_t + \gamma_r r_t$$

i.i.d. case:

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t + \gamma_r r_t \quad (AS)$$

i.i.d. case :

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t + \gamma_r r_t$ (AS)

NK model corresponds to
$$\gamma_r = 0$$

i.i.d. case :

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t + \gamma_r r_t$ (AS)

NK model corresponds to $\gamma_r = 0$

i.i.d. case:

$$\ell_t = -\alpha_r r_t + d_t \quad (EE)$$

$$0 = \gamma_\ell \ell_t + \gamma_r r_t \quad (AS)$$

Assume γ_r is small (compared to γ_ℓ)

i.i.d. case:

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t + \gamma_r r_t$ (AS)

Assume γ_r is small (compared to γ_ℓ)

i.i.d. case:

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t + \gamma_r r_t$ (AS)

Assume γ_r is large (compared to γ_ℓ)

i.i.d. case:

$$\ell_t = -\alpha_r r_t + d_t$$
 (EE)
 $0 = \gamma_\ell \ell_t + \gamma_r r_t$ (AS)

Assume γ_r is large (compared to γ_ℓ)

Towards An Extended Model

- ▶ Importance of the cost channel: $\frac{\gamma_r}{\gamma_\ell} \leq \alpha_r$
- ▶ In the *i.i.d.* case, we say that the model is Real Keynesian if $\frac{\gamma_r}{\gamma_e} > \alpha_r$
- ▶ Need to go beyond the i.i.d. case
- ► → Expectations in the Euler equation will matter

The RK condition

Result 1

With flex. prices, positive demand shocks (both current and expected future) of any persistence have a positive effect on ℓ if and only if

$$\frac{\gamma_r}{\gamma_\ell} > \frac{\alpha_r}{}$$
 (RK)

The RK condition

Result 1

With flex. prices, positive demand shocks (both current and expected future) of any persistence have a positive effect on ℓ if and only if

$$\frac{\gamma_r}{\gamma_\ell} > \frac{\alpha_r}{(1 - \frac{\alpha_\ell}{\alpha_\ell})}$$
 (RK)

where the Euler Equation is

$$\ell_t = \frac{\alpha_\ell}{\epsilon_t} E_t \ell_{t+1} - \alpha_r (i_t - E_t \pi_{t+1}) + d_t$$

$$\ell_t = \frac{\alpha_\ell E_t \ell_{t+1} - \alpha_r (i_t - E_t \pi_{t+1}) + d_t}{\pi_t = \beta E_t \pi_{t+1} + \kappa (\gamma_\ell \ell_t + \gamma_r (i_t - E_t \pi_{t+1}))}$$

Euler Equation (EE)

Phillips Curve (PC)

► Two changes (microfoundations in the paper):

$$\times \quad \alpha_{\ell} \leq 1$$
: discounted EE $\times \quad \gamma_{r} > 0$: cost channel

- Nothing novel, except for putting them together.
- Note: standard NK model: $\alpha_{\ell} = 1$, $\gamma_{r} = 0$
- ▶ To remember: α 's for the EE, γ 's for the PC

with demand, cost-push and monetary policy shocks

$$\ell_t = \alpha_{\ell} E_t \ell_{t+1} - \alpha_r (i_t - E_t \pi_{t+1}) + d_t$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (\gamma_{\ell} \ell_t + \gamma_r (i_t - E_t \pi_{t+1})) + \mu_t$$
(EE)
(PC)

with demand, cost-push and monetary policy shocks

$$\ell_{t} = \frac{\alpha_{\ell} E_{t} \ell_{t+1} - \alpha_{r} (i_{t} - E_{t} \pi_{t+1}) + d_{t}}{\pi_{t} = \beta E_{t} \pi_{t+1} + \kappa (\gamma_{\ell} \ell_{t} + \gamma_{r} (i_{t} - E_{t} \pi_{t+1})) + \mu_{t}}$$

$$i_{t} = E_{t} \pi_{t+1} + \phi_{\ell} \ell_{t} + \nu_{t}$$
(PC)
(Policy Rule)

with demand, cost-push and monetary policy shocks

$$\ell_{t} = \alpha_{\ell} E_{t} \ell_{t+1} - \alpha_{r} (i_{t} - E_{t} \pi_{t+1}) + d_{t}$$

$$\pi_{t} = \beta E_{t} \pi_{t+1} + \kappa (\gamma_{\ell} \ell_{t} + \gamma_{r} (i_{t} - E_{t} \pi_{t+1})) + \mu_{t}$$

$$i_{t} = E_{t} \pi_{t+1} + \phi_{\ell} \ell_{t} + \nu_{t}$$
(PC)
(Policy Rule)

Theorem 1

For any Taylor rule $i_t = \widetilde{\phi}_{\pi} \pi_t + \widetilde{\phi}_{\ell} \ell_t + \widetilde{\nu}_t$ that gives determinacy, there exists a policy rule

$$i_t = E_t[\pi_{t+1}] + \phi_\ell \ell_t + \nu_t$$

that produces the same allocations, with $\nu_t = a\mu_t + b\widetilde{\nu}_t$

Policy Rules

Corollary 1

If monetary policy is given by

$$i_t = E_t[\pi_{t+1}] + \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$

with $\phi_{\ell} > 0$, then there is a unique stationary equilibrium.

Result 2

Result 2

i.i.d. case
$$(i_t = r_t)$$
:

$$\ell_t = \alpha_r r_t + d_t \tag{EE}$$

$$\pi_t = \kappa (\gamma_\ell \ell_t + \gamma_r r_t) + \mu_t \tag{PC}$$

$$r_t = \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$
 (Policy Rule)

Result 2

$$\underline{i.i.d.}$$
 case $(i_t = r_t)$:

$$\ell_t = \alpha_r r_t + d_t$$
 (EE)

$$\pi_t = \kappa (\gamma_\ell \ell_t + \gamma_r r_t) + \mu_t$$
 (PC)

$$r_t = \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$
 (Policy Rule)

Result 2

$$\underline{i.i.d.}$$
 case $(i_t = r_t)$:

$$\ell_t = \alpha_r r_t + d_t$$
 (EE)

$$\pi_t = \kappa (\gamma_\ell \ell_t + \gamma_r r_t) + \mu_t$$
 (PC)

$$r_t = \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$
 (Policy Rule)

Result 2

$$\underline{i.i.d.}$$
 case $(i_t = r_t)$:

$$\ell_t = \alpha_r r_t + d_t$$
 (EE)

$$\pi_t = \kappa (\gamma_\ell \ell_t + \gamma_r r_t) + \mu_t$$
 (PC)

$$r_t = \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$
 (Policy Rule)

Result 2

i.i.d. case
$$(i_t = r_t)$$
:

$$\ell_{t} = \alpha_{r} r_{t} + d_{t}$$
 (EE)

$$\pi_{t} = \kappa (\gamma_{\ell} \ell_{t} + \gamma_{r} r_{t}) + \mu_{t}$$
 (PC)

$$r_{t} = \phi_{\ell} \ell_{t} + \phi_{\mu} \mu_{t} + \nu_{t}$$
 (Policy Rule)

RK Matters for Monetary Policy and Monetary Shocks

- Monetary Policy and Stabilization
- ► Determinacy under *i* peg
- Monetary Shocks

Effects of Stabilization with Demand Shocks

$$i_t = E_t \pi_{t+1} + \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$

Result 3

A more aggressive policy (ϕ_{ℓ} larger) always decreases σ_{ℓ}^2 at the cost of increasing σ_{π}^2 iff the RK condition is satisfied.

NK Configuration ($\gamma_r = 0$, $\alpha_\ell = 1$)

NK Configuration ($\gamma_r = 0$, $\alpha_\ell = 1$)

Under RK $\left(\frac{\gamma_r}{\gamma_\ell} > \frac{\alpha_r}{(1-\alpha_\ell)}\right)$

Under RK $\left(\frac{\gamma_r}{\gamma_\ell} > \frac{\alpha_r}{(1-\alpha_\ell)}\right)$

Nominal Interest Rate Peg (ZLB)

Suppose policy goes from

$$i_t = E_t \pi_{t+1} + \phi_\ell \ell_t + \phi_\mu \mu_t + \nu_t$$

to

$$i_t = 0$$
.

Result 4

In the NK configuration,

- × indeterminacy
- imes in all equilibria, σ_ℓ^2 and σ_π^2 move together (conditional on demand shocks)

In the RK configuration,

- × determinacy
- imes σ_ℓ^2 increases but σ_π^2 decreases (conditional on demand shocks)

Monetary Shocks

Result 5

In response to a contractionary monetary shocks,

- ▶ If the shock is not very persistent, then NK and RK cannot be distinguished.
- If shock is sufficiently persistent,
 - × it increases inflation in RK case (neo-Fisherian effect)
 - × it decreases inflation in the NK case
- RK favoured if we observe both (i) persistent monetary shock that (ii) do not lead to a fall in inflation
- ► "Congressman Wright Patman effect" (1970): raising interest rates to fight inflation is like "throwing gasoline on fire"

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Focus on the Zero Lower Bound and Missing Deflation

$$\pi_t = \gamma_f E_t \pi_{t+1} + \kappa \gamma_\ell \ell_t + \kappa \gamma_r (i_t - E_t \pi_{t+1}) + \mu_t$$

$$\pi_t = \gamma_f E_t \pi_{t+1} + \kappa \gamma_\ell \ell_t + \kappa \gamma_r (i_t - E_t \pi_{t+1}) + \mu_t$$

$$\pi_t = \gamma_f E_t \pi_{t+1} + \gamma_\ell \ell_t + \gamma_r (i_t - E_t \pi_{t+1}) + \mu_t$$

$$\pi_t = \gamma_f E_t \pi_{t+1} + \gamma_\ell \ell_t + \gamma_r (i_t - E_t \pi_{t+1}) + \mu_t$$

$$\pi_t = \gamma_f E_t \pi_{t+1} + \gamma_\ell x_t + \gamma_r (i_t - E_t \pi_{t+1}) + \mu_t$$

$$\pi_t = \gamma_f E_t \pi_{t+1} + \gamma_\ell x_t + \gamma_r (i_t - E_t \pi_{t+1}) + \mu_t$$

$$\pi_t = \gamma_f \quad \pi_{t+1}^e + \quad \gamma_\ell x_t + \quad \gamma_r (i_t - \quad \pi_{t+1}^e) + \mu_t$$

$$\pi_t = \gamma_f \quad \pi_{t+1}^e + \quad \gamma_\ell x_t + \quad \gamma_r (i_t - \quad \pi_{t+1}^e) + \mu_t$$

- \blacktriangleright π_t : Headline CPI
- $\blacktriangleright \pi_t^e$: University of Michigan Survey of Consumers
- x_t: minus Unemployment gap from U.S. Congressional Budget Office

Phillips Curve Estimates: Basic

$$\pi_t = \gamma_f \pi_{t+1}^e + \gamma_\ell x_t + \gamma_r (i_t - \pi_{t+1}^e) + \mu_t$$

	OLS	OLS	IV
γ_f	1.17***	1.11***	1.10***
γ_ℓ	0.25***	0.12^{*}	0.01
γ_{r}	_	0.24***	0.28***

imes Controlling for oil price,

imes $i_t - \pi^e_{t+1}$ is instrumented with 6 lags of ${
m ROMER}$ & ${
m ROMER}$ shocks and their square ,

imes Sample: 1969Q1-2017Q4,

 \times $N{\ensuremath{\mathrm{EWEY}}}$ & $W{\ensuremath{\mathrm{EST}}}$ correction for heteroskedasticity and autocorrelation.

Phillips Curve Estimates: Hybrid

$$\pi_t = \gamma_f \pi_{t+1}^e + \gamma_b \pi_{t-1} + \gamma_\ell x_t + \gamma_r (i_t - \pi_{t+1}^e) + \mu_t$$

	OLS	OLS	IV
γ_f	0.77***	0.88***	0.89***
γ_{b}	0.35***	0.22*	0.21***
γ_ℓ	0.12^{*}	0.06	0.02
γ_r		0.18***	0.20***

- × Controlling for oil price,
- imes $i_t-\pi_{t+1}$ is instrumented with 6 lags of ${
 m ROMER}$ & ${
 m ROMER}$ shocks and their square ,
- imes Sample: 1969Q1-2017Q4,
- \times $N{\ensuremath{\mathrm{EWEY}}}$ & $W{\ensuremath{\mathrm{EST}}}$ correction for heteroskedasticity and autocorrelation.

Phillips Curve Estimates: Hybrid, Various Samples

$$\pi_t = \gamma_f \pi_{t+1}^e + \gamma_b \pi_{t-1} + \gamma_\ell x_t + \gamma_r (i_t - \pi_{t+1}^e) + \mu_t$$

	1969-2006	1969-1992	1992-2017	1984-2006
γ_f	0.82***	0.84***	0.79***	0.85***
γ_{b}	0.32***	0.34***	-0.03	-0.08
γ_ℓ	-0.06	-0.05	0.08	-0.49***
γ_r	0.20***	0.25***	0.08	0.40***

- × Controlling for oil price,
- imes $i_t \pi_{t+1}$ is instrumented with 6 lags of ${
 m ROMER}$ & ${
 m ROMER}$ shocks and their square ,
- imes Sample: 1969Q1-2006Q4,
- \times $N{\ensuremath{\mathrm{EWEY}}}$ & $W{\ensuremath{\mathrm{EST}}}$ correction for heteroskedasticity and autocorrelation.

Phillips Curve Estimates: Hybrid, Instrumenting More Variables

$$\pi_t = \gamma_f \pi_{t+1}^e + \gamma_b \pi_{t-1} + \gamma_\ell x_t + \gamma_r (i_t - \pi_{t+1}^e) + \mu_t$$

	Instrumented variables					
	$\{\pi_{t+1}^e, \pi_{t-1}, r_t, x_t\}$	$\{\pi^e_{t+1}, r_t, x_t\}$				
γ_f	1.31***	0.87***				
γ_{b}	0.26***	0.27***				
γ_{x}	-0.03	0.20				
γ_r	0.23***	0.16***				

- × Controlling for oil price,
- \times Instruments are 6 lags of $\operatorname{ROMER}\,\&\,\operatorname{ROMER}$ shocks and their square ,
- imes Newey & West correction for heteroskedasticity and autocorrelation.

Phillips Curve Estimates: Hybrid, Full Info Rat. Exp.

$$\pi_t = \gamma_f \pi_{t+1} + (1 - \gamma_f) \pi_{t-1} + \gamma_\ell x_t + \gamma_r (i_t - \pi_{t+1}) + \mu_t$$

	x: Labor Share			x: Unempl. gap		
	(1)	(2)	(3)	(4)	(5)	(6)
γ_f	0.66***	0.66***	0.56***	0.57***	0.61***	0.60***
γ_{b}	$1-\gamma_{\it f}$	$1-\gamma_{\it f}$	$1-\gamma_{\it f}$	$1-\gamma_{\it f}$	$1-\gamma_f$	$1-\gamma_{\it f}$
γ_ℓ	4.72**	-3.38	-10.12	-0.01	-0.03	-0.09
γ_r		0.18***	0.15***		0.17***	0.12**

- × Controlling for oil price,
- \times Instruments are: (1), (2), (4) and (5): GALÍ & GERLER's instruments, (3) and (6): 6 lags of ROMER & ROMER shocks and their square, '
- \times Sample: 1969Q1-2006Q4,
- imes Newey & West correction for heteroskedasticity and autocorrelation.

Phillips Curve Estimates: Recap

- Recap: The effect of the real interest rate on inflation can be
 - × indirect, thought its impact on the gap
 - × direct, on top of the effect of the gap
- ▶ Very strong evidence of the direct effect, not much of the indirect one.
- Results are (by and large) robust to
 - imes various measures of the gap
 - imes various measures of the inflation rate
 - × Choice of instruments

- ► Here we estimate the full model by Maximum Likelihood
- ▶ Data:
 - \times π : GDP deflator,
 - \times i_t : fed funds rate,
 - \times ℓ_t : minus unemployment rate.
- ► Sample:
 - × long: 1954:3- 2007:4,
 - post-Volker-deflation sample: 1983:4-2007:4
- Maximum Likelihood estimation

Result 6

Estimation shows that the model is in the Real Keynesian region.

$$\varepsilon_{\mu}$$
 $\varepsilon_{
u}$

Max Likelihood Estimation, Full Sample, Habit persistence, gradual adjustment of i and hybrid New Phillips curve

Robustness

- Results are robust across the 3 following sub-samples
 - 1. Pre Volker dis-inflation period (1954:3-1979:1)
 - II. Post Volker dis-inflation period (1983:4-2007:1)
 - III. Zero Lower Bound period (2009:1-2016:3)
- Results robust when allowing the model to have endogenous propagation (hybrid PC + habit persistence + i_{t-1} in the policy rule)
- Results robust when allowing the model to have more shocks
- Results robust when varying the measure of inflation (CPI of GDP deflator) and of activity (unemployment or hours)

Roadmap

- 1. Theory
- 2. Empirical Relevance
- 3. Focus on the Zero Lower Bound and Missing Deflation

Low Variance of Inflation at the ZLB

		$\sigma_{\it u}$	σ_{π}	σ_i
Post-Volcker	:	1.3	.9	2.5
ZLB	:	1.7	.8	.1

- Observation: the variance of inflation slightly decreased at ZLN.
- ▶ It should have increased in the NK configuration (under the assumption that demand shocks drove the economy)
- ▶ But this is consistent with the RK configuration

The ZLB Trap

- ▶ RK framework suggest that ZLB was quasi inevitable following a persistent fall in demand.
- ► In RK, both the fall in demand and the response of monetary authorities favours lower inflation:
 - ★ Initial negative demand shock
 ★→ Initial negative dema
 - imes Low activity and low inflation \leadsto

 - \times Lower *i* and lower inflation \rightsquigarrow

 - \times Even lower $i \rightsquigarrow$
 - × Hit the zero lower bound.

Summary

- ▶ When demand matters with flexible prices (*Real Keynesian* models), adding sticky prices affect the way we think of monetary policy:
 - imes trade-off between stabilising inflation and output when facing demand shocks
 - × Determinacy at the ZLB
 - × Variance of inflation and output moving in opposite direction at the ZLB
- Data favours Phillips Curve with cost channel
- Data favours Real Keynesian configuration
- Main reason is that monetary shocks are persistent and they have neo-Fisherian effect

