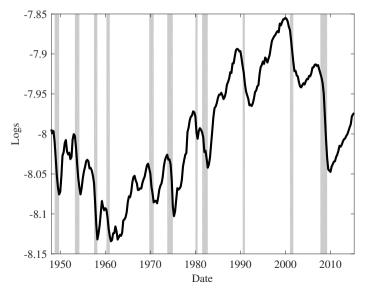
"Meet your lecturer" series

Cyclical Fluctuations

Franck Portier

University College London

November 25, 2020


- I am a Macro professor at UCL
- ▶ Paris (France) Phd
- See my webpage: fportier.wordpress.com

Based on my work with PAUL BEAUDRY (now deputy-governor of the Bank of Canada) & DANA GALIZIA (now professor at Carleton University)

- ► The economy is quite cyclical (to be defined)
- This has implications for modelling and policy.

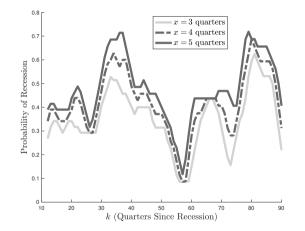
Figure 1: Cyclical fluctuations : U.S. Non-Farm Business Hours Per Capita

Roadmap

- I. Cyclicality
- II. Instability
- III. Implications for Modelling and Policy

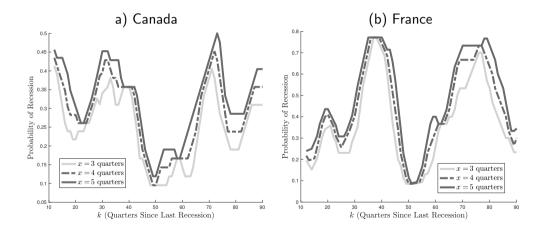
Roadmap

- L. Cyclicality
- II. Instability
- III. Implications for Modelling and Policy

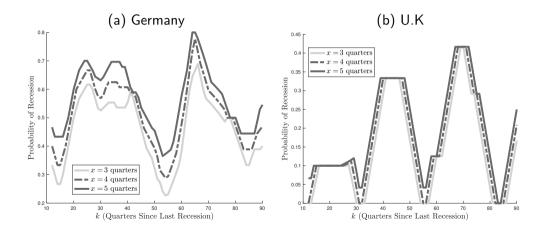

I. Cyclicality

BUSINESS CYCLE

Table 1: Recent U.S. Business Cycles, as identified by the NBER's Business Cycle Dating Committee

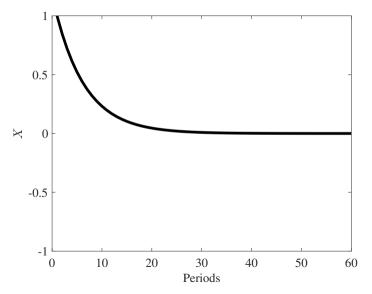

REFERENCE DATES		DURATION IN MONTHS			
Peak	Trough	Contraction	Expansion	Cycle	
Quarterly dates are in parentheses		Peak to Trough	Previous trough to this peak	Trough from Previous Trough	Peak from Previous Peak
April 1960(II) December 1969(IV) November 1973(IV) January 1980(I) July 1981(III)	February 1961 (I) November 1970 (IV) March 1975 (I) July 1980 (III) November 1982 (IV)	10 11 16 6 16	24 106 36 58 12	34 117 52 64 28	32 116 47 74 18
July 1990(III) March 2001(I) December 2007 (IV)	March 1991(I) November 2001 (IV) June 2009 (II)	8 8 18	92 120 73	100 128 91	108 128 81

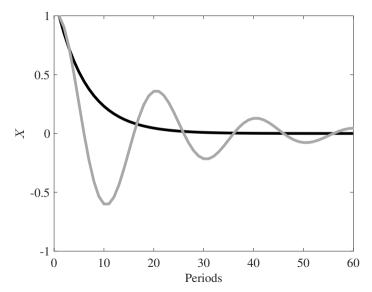
I. Cyclicality Conditional Probability of Being in a Recession (US)



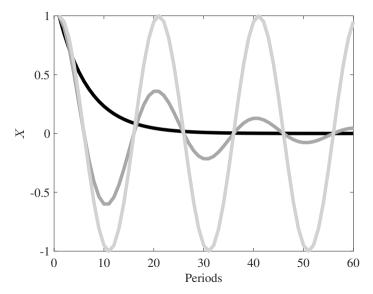
Notes: This shows the fraction of time the economy was in a recession within an x-quarter window around time t + k, conditional on being in a recession at time t, where x is allowed to vary between 3 and 5 quarters.

I. Cyclicality Conditional Probability of Being in a Recession

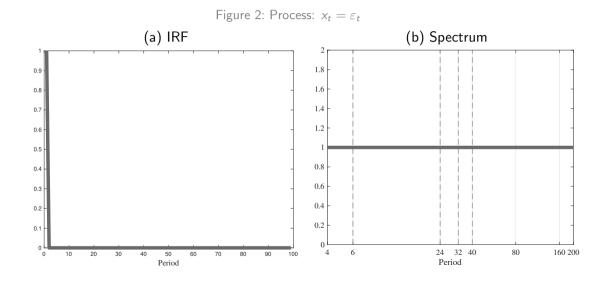

I. Cyclicality Conditional Probability of Being in a Recession

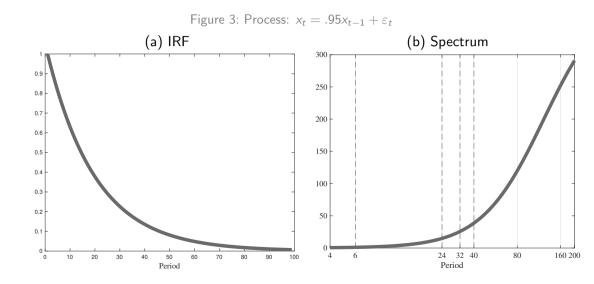

I. Cyclicality Cyclicality

- ▶ I now can be more precise about what I mean by cyclicality
 - imes If activity is high today,
 - $\times~$ in, say, 20 periods in the future, economic activity is expected to be low,
 - $\times~$ and then in 40 period expected to be high again and so on.
- Different from the more standard view (by standard, I mean in most macro models):
 - imes If activity is high today,
 - \times $\;$ we expect it to return to the mean.
- ▶ The two views differ on whether or not we should worry about big booms.


I. Cyclicality Absence of Cyclicality

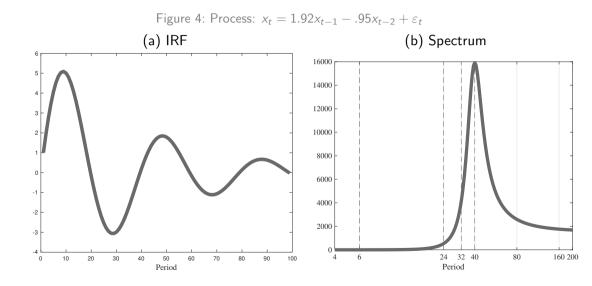
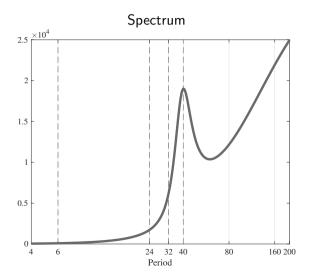
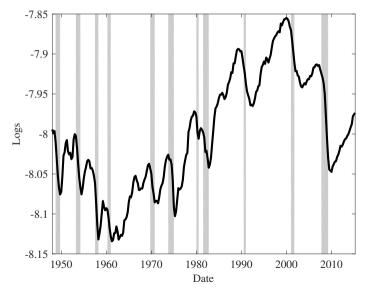
I. Cyclicality Cyclicality

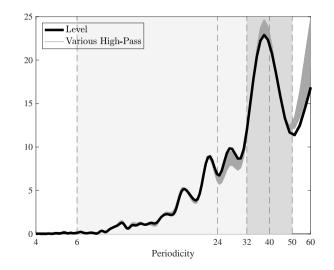


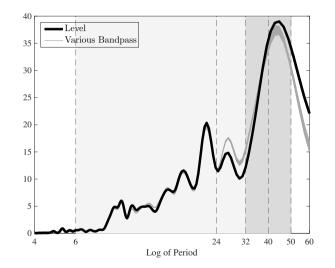

I. Cyclicality "Strong" Cyclicality

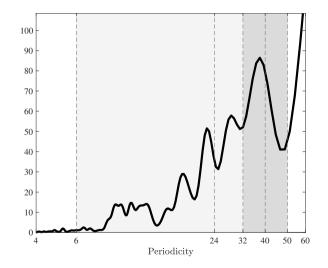
1. Motivating Observations Looking for Peaks in Spectral Density

- ▶ One way to check if there is cyclicality is to look for a peak in spectral density
- Spectral density:
 - \times Decompose a series into a sum of sine waves of different periods
 - \times $\;$ Look at the weight of each sine wave in explaining the series fluctuations

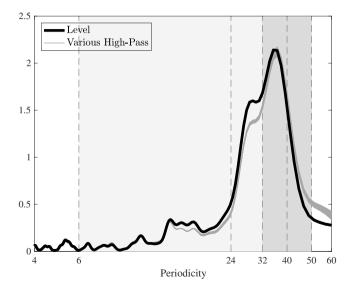





Figure 5: Process: $x_t = x_{1t} + x_{2t}$, $x_{1t} = 1.92x_{1t-1} - .95x_{1t-2} + \varepsilon_{1t}$, $x_{2t} = .95x_{2t-1} + \varepsilon_{2t}$

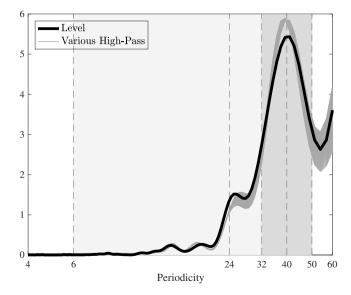

I. Cyclicality Non-Farm Business (NFB) Hours Per Capita


1. Motivating Observations Non Farm Business Hours per Capita Spectrum

1. Motivating Observations Capacity Utilization Spectrum



1. Motivating Observations Investment-Output ratio



► The cycle is also a financial cycle

1. Motivating Observations Chicago Fed National Financial Conditions Index

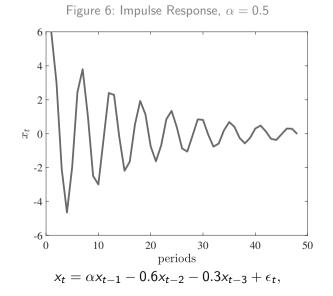
1. Motivating Observations Delinquency Rate

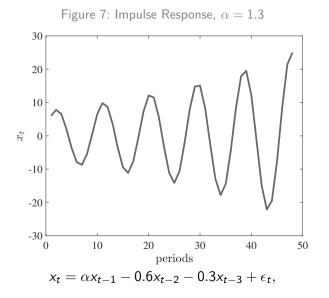
1. Motivating Observations Spread (BBA bonds-FFR)

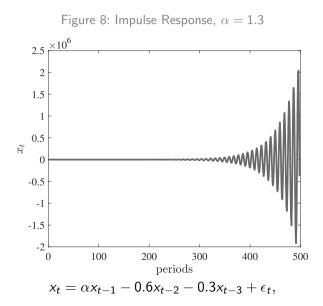
1. Motivating Observations Wrapping up

Data seems to tell us that there is indeed cyclicality

Roadmap


- I. Cyclicality
- II. Instability
- III. Implications for Modelling and Policy


II. Instability An example


- Macro variables dynamics (removing trend) is well explained by AR(3) linear models
- Assume

$$x_t = \alpha x_{t-1} - 0.6x_{t-2} - 0.3x_{t-3} + \epsilon_t, \tag{1}$$

and $\alpha = 0.5$

► Assume instead

$$x_t = \alpha x_{t-1} - 0.6x_{t-2} - 0.3x_{t-3} - 0.01x_{t-1}^3 + \epsilon_t,$$
(2)

 \blacktriangleright and keep $\alpha=1.3$

II. Instability Introductory example: a Limit Cycle

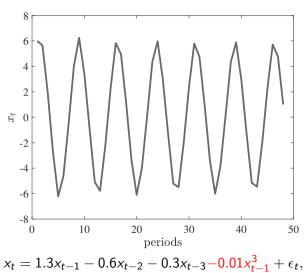


Figure 9: Impulse Response with $-0.01x_{t-1}^3$

II. Instability Introductory example: a Limit Cycle

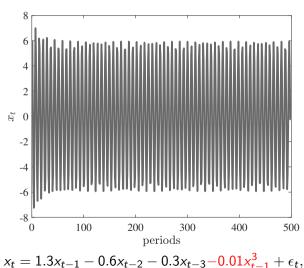
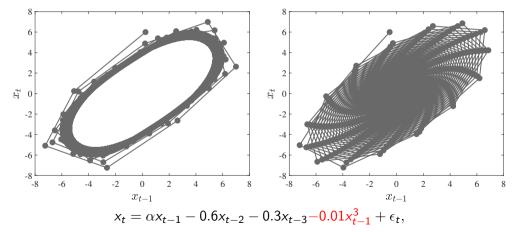



Figure 10: Impulse Response with $-0.01x_{t-1}^3$

II. Instability Introductory example

Figure 11: In the (x_t, x_{t-1}) plance with $-0.01x_{t-1}^3$ and $\alpha = 1.3$ or with $\alpha = 0.5$ nand no cubic term.

II. Instability Implications

- ▶ Working with linear model rules out local instability because it implies explosion.
- Therefore, the economic system is seen as stable, fluctuating only because of shocks
- Adding nonlinearities opens the door to *local* instability.
- Market economies can be intrinsically unstable, but not explosive
- Fluctuations are not caused by good and bad luck (shocks), but are inherent to market forces.

Roadmap

- I. Cyclicality
- II. Instability
- III. Implications for Modelling and Policy

III. Implications for Modelling and Policy A Reduced form setup

Assume that agents actions depend on

- \times $\;$ what they have done in the past
- \times $\,$ what the other are doing
- What is the impact impact of what the others are doing on what I do?
 - imes negative (substitutabilities): typically the case of Walrasian equilibrium
 - \times positive (*complementarities*): example consumption with unemployment risk.

III. Implications for Modelling and Policy Main result

- ▶ The more *substitutabilities*, the more stable and acyclical the dymamics is.
- There is always a degree of *complementarities* such that the model will become locally unstable
- ▶ With non-linearities, a limit cycle will appear.

Figure 12: With substitutabilities

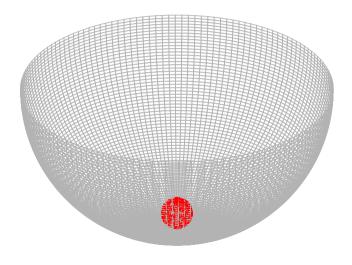


Figure 13: With enough complementaries in a linear world

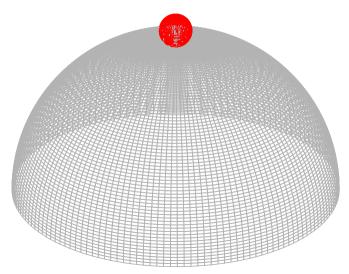


Figure 14: With substitutabilities

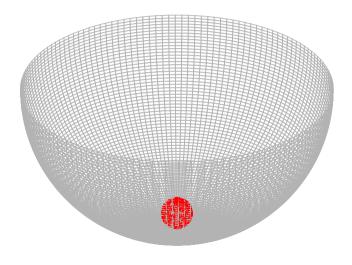
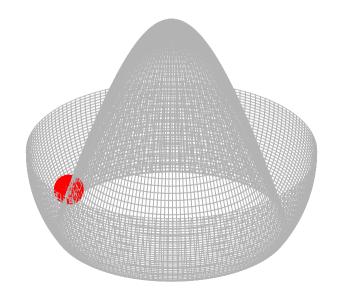
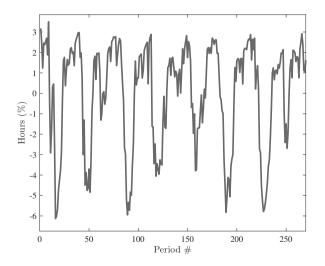
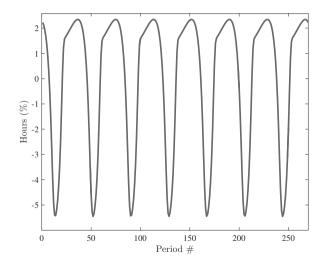



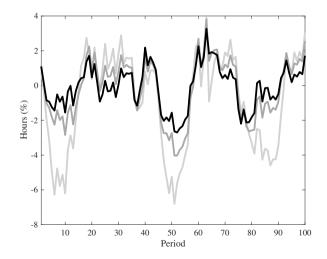
Figure 15: With enough complementarities but in a nonlinear world

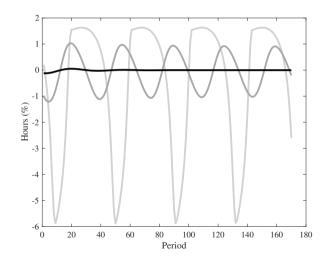


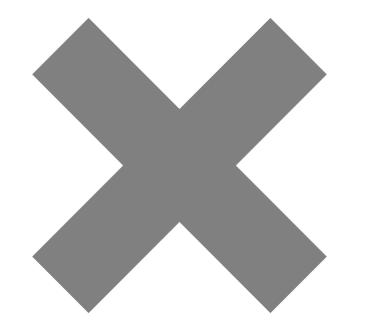
III. Implications for Modelling and Policy A microfounded economic model


Main mechanism:

- imes in booms, less defaults
- $\times \quad \leadsto \quad \mathsf{cheap} \ \mathsf{credit}$
- $\times ~ \rightsquigarrow$ more borrowing to buy goods (in particular durable goods and houses) \rightsquigarrow even less defaults \rightsquigarrow even cheaper credit
- $\times \quad \leadsto$ the boom is even bigger
- But at some point, satiation (lot of houses, TV sets, etc...), so that demands goes down
 - $\times \quad \rightsquigarrow \text{ less sales } \rightsquigarrow \text{ defaults increase}$
 - $\times ~~ \rightsquigarrow$ credit becomes more expensive \rightsquigarrow less demand \rightsquigarrow more default etc...
- Can this mechanism be strong enough to create cycles when estimated?
- ▶ Note: Expansion sows the seed of the next recession.


III. Implications for Modelling and Policy Sample Draw for Hours


III. Implications for Modelling and Policy Sample Draw for Hours, no shocks



III. Implications for Modelling and Policy Policy experiment - Hours, One Stochastic Simulation, Increasing Monetary policy Reactivity

III. Implications for Modelling and Policy Policy experiment -Hours Deterministic Simulation, Increasing Monetary policy Reactivity

